2015

M.Sc.

3rd SEMESTER EXAMINATION

COMPUTER SCIENCE

PAPER-COS-301

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Advanced Operating System)

Answer any five questions:

5×10

- 1. (a) What is process?
 - (b) Explain with diagram different state of process.
 - (c) Consider the following process that arrive at time O, with length of CPU burst in mili seconds. If the time quantum is 4 mili seconds, calculate the average waiting time and average turn-around time:

Process	Burst time		
P ₁	24		
P ₂	3		
P ₃	3		

2+5+3

- 2. (a) What is monitor?
 - (b) Explain dining-philosophers solution using monitor.
 - (c) Define wait and signal operations of semaphore that don't suffer from busy waiting. 2+5+3
- 3. (a) What is dead lock?
 - (b) What are the necessary conditions of dead lock?
 - (c) Consider the following system with five process P_0 through P_4 and three resources type A, B, C:

ALLOCATION				MAX				
	Α	В	С	L		Α	В	С
Po	0	1	0		Po	7	5	3
P_1	2	0	0		P ₁	3	2	2
P ₂	3	0	2		P ₂	9	0	2
P ₃	2	1	1		P ₃	2	2	2
P ₄	0	0	2		P ₄	4	3	3

AVAILABLE					
A	В	С			
3	3	2			

- (i) Is the system is in safe state?
- (ii) If process P₁ request (1, 0, 2) the request will be granted or not?

2+3+5

4. (a) Suppose the following process arrived for execution at the time indicated:

3+3

Process	Arrival Time	Burst Time
P ₁	0 .	8
P ₂	1	4
P ₃	2	9
P ₄	3	5

What is average waiting time and turn around time for the following:

- (i) FCFS; and (ii) Preemptive SJF algorithm.
- (b) Explain deadlock prevention and deadlock avoidance.
- 5. (a) What is race condition? How can it be avoided?
 - (b) Explain Shortest Seek Time First (SSTF) disc scheduling? Why SSTF tries to favor middle cylinders over the inner and outer most cylinders?

4+(3+3)

- **6.** (a) Write the different memory allocation strategy? Out of them which strategy is best and why? Justify your answer.
 - (b) Write the difference between page and frame?
 - (c) Write a short note on Demand paging'?
 - (d) What is address space and what is memory space? 4+2+2+2

7. Write short notes (any two):

 2×5

- (a) Real time operating system;
- (b) Distributed operating system;
- (c) Virtual memory management.

[Internal Assessment — 10 Marks]