2015

M.Sc.

2nd Semester Examination DESIGN & ANALYSIS OF ALGORITHM

PAPER-COS-203

Full Marks: 40

Time: 2 Hours

The questions are of equal value.

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer Q. No. 1 and any two questions from the rest.

- 1. (a) What is an algorithm? Why analysis of algorithm is required?
 - (b) What is asymptotic notation? Define different types of asymptotic notation.
 - (c) Show that the complexity of the below recurrence is O(1):

$$T(n) = \begin{cases} 3T(n-1), & \text{if } n > 0 \\ 1, & \text{otherwise} \end{cases}$$
 (1+1)+(1+4)+3

- 2. (a) Explain divide and conquer strategy in detail. Write down algorithm for quick sort by applying divide and conquer strategy.
 - (b) Explain and derive the time complexity of merge sort. (4+6)+5

- 3. (a) Using Backtracking techniques write an algorithm to solve n-Queens problem and find its time complexity.
 - (b) Mention all the steps of Dynamic programming.

 Define B-tree. (7+3)+(3+2)
- 4. (a) Write down the all necessary algorithms to implement a disjoint set forest with the union by rank heuristic.
 - (b) Write an algorithm to find an optimal parenthesization of a matrix chain product using dynamic programming approach, stating all steps of this approach.

5+10

- 5. (a) What is dynamic programming? Explain the key features an optimization problem should have for dynamic programming.
 - (b) What is Knapsack problem? Find the optimal solution of the following Knapsack problem using dynamic programming strategy: (2+3)+(2+8)

Total capacity C = 10

No. of objects i = 4

Item	1	2	3	4
Value	10	40	30	50
Weight	5	4	6	3

- 6. (a) What are the concept of reducibility and satisfiability? Show that the clique problem is NP-complete.
 - (b) Define lower bound and upper bound?
 - (c) What is light edge in a graph? (3+7)+3+2