2015

M.Sc.

2nd Semester Examination THEORY OF COMPUTATION & COMPILER

PAPER-COS-202

Full Marks: 50

Time: 2 Hours

The questions are of equal value.

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Module-1

(THEORY OF COMPUTATION)

(Marks: 20)

Answer any two questions:

2×10

1. (a) Construct a Mealy machine which is equivalent to the Moore machine given by the following table: 5

Present	Next State		Output
State	a = 0	a = 1	
→ q ₁	q_1	q_2	0
\mathtt{q}_2	$\mathbf{q_1}$	q_3	0
q_3	$\mathbf{q_1}$	q_3	1

(b) Consider the following grammar G:

2

$$S \rightarrow aS \mid bS \mid a \mid b$$

Find the language L(G) generated by the grammar.

- (c) Construct a grammar to generate all palindromes over {a, b}.
- 2. (a) Construct a regular expression corresponding to the state diagram described by the following transition diagram:

 5

(b) Find a reduced grammar equivalent to the grammar G whose productions are: 5

$$B \rightarrow BC \mid AB$$

$$C \rightarrow aB \mid b$$

$$D \rightarrow d$$

3.	(a)	Find a grammar in Chomsky Normal Form equivalent to:
	٠.	$S \rightarrow aAbB$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$
	(b)	Construct a grammar in Greibach Normal Form equivalent to the grammar:
		$S \rightarrow AA \mid a$ $A \rightarrow SS \mid C$
4.	(a)	Construct a PDA accepting the Language $L = \{a^n b^m c^m d^n \mid m, n \ge 1\}$
	(b)	Design a Turing Machine to recognize all strings over {0, 1} consisting of an odd number of 0's. 5
		Internal Assessment : 5
ž.	× .	Module—2
	*	(Compiler Design)
		(Marks : 20)
		Answer any two questions.
1.	(a)	What do you mean by token and value of token? Explain with suitable example.
	(b)	Consider the following grammar:
		S → ABC
		A → Aald
		B → Bble
		C → Cdlf

Eleminate the left recursion from the above grammar.

- 2. (a) Define LL(1) grammar.
 - (b) Construct predictive parser for the following grammar:

$$E' \rightarrow TE' / \in$$

 $T \rightarrow FT'$

$$T' \rightarrow *FT' / \in$$

$$F \rightarrow (\in) / id$$

2+8

3. Construct LALR (1) parsers for the following grammar:

$$S \rightarrow L = R$$

$$L \rightarrow *R$$

$$R \rightarrow L$$

- 4. Short notes (any two):
 - (a) LEX and YAAC;
 - (b) Loop optimization;
 - (c) Symbol table;
 - (d) Dependency graph.

Internal Assessment: 5