2015

M.Sc.

1st Semester Examination

COMPUTER SCIENCE

PAPER-COS-101

Full Marks: 50

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Mathematical Computation)

Answer Q. No. 1 and any three from the rest.

1. (i) Prove by mathematical induction that $n \le 3^n$ for $n \in \mathbb{N}$.

5

(ii) Prove by contradiction method— "There is no integer that in both even and odd".

(Turn Over)

- 2. (a) Let A, B, C are subsets of universal set S. Prove $(A-C) \cap (B-C) = (A \cap B) C.$ 5
 - (b) State mathematical induction principle, Prove that, $1+3+5+...+(2n^{-1})=n^2$, for any positive integer n.

3. (a) State the difference between string and a field. 5

- (b) If G is a finite group, show that there exists a positive integer m such that $a^n=e$ for all $a \in G$.
- 4. (a) Show that the following statement is true.

$$(P \wedge Q) \Leftrightarrow P \vee Q$$
.

(b) Show that t is a valied conclusion from the following premises.

$$P \Rightarrow Q, Q \Rightarrow \gamma, \gamma = S, \neg S$$
 and $P \lor t$.

- 5. (a) Using Mathematical Induction to prove that of all integers $n \ge 4$, $3^n \ge n^3$.
 - (b) In a group (G,*) by providing the inverse of every elements in unique, show that:

$$(a * b)^{-1} = b^{-1} * a^{-1}$$
 for all $a, b \in G$.

5

- 6. (a) Verify the validity of the following arguments:
 Every living thing is a plant or an animal. Legis dog is alive and it is not a plant. All animals have heart.
 Therefore Legis dog has a heart.
 - (b) Give on example of a group which is abelian but not cyclic.
- 7. (a) Use Mathematical induction to prove that $4^{n+1} + 5^{2n-1}$ is divisible by 21 for all n > 0.
 - (b) Solve: $a_n+5a_{n-1}+6a_{n-2}=3n^2-3n+1 \text{ with initial conditions}$ $a_0=0, \ a_1=1.$ 5
- 8. (a) Prove that the number of vestices of odd degree in a graph is always even.
 - (b) Show that $(p \lor q) \land (\neg p \land \neg q)$ is a contradiction.

3

(c) Let $A=R-\{3\}$ and $B=R-\{1\}$ where R is the set of real numbers. Let the function $f:A\to B$ be defined as

$$f xy = \frac{x-2}{x-3}$$
 for $x \in A$.

Show whether f is bijective. Also find f^{-1} if it exists.

[Internal Assessment -- 10 Marks]