2019

M.LIB.I.Sc.

2nd Semester Examination

QUANTITATIVE TECHNIQUES IN LIBRARY AND INFORMATION CENTRES

Paper - MLI 210

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

1. Answer any four questions:

2×4

- (a) Define weighted harmonic mean for $x_1(f_1)$ and $x_2(f_2)$, where x_1 and x_2 are two discrete random variables with corresponding frequencies f_1 and f_2 .
- (b) Define class interval and class frequency.
- (c) Distinguish between discrete variable and continuous variable.

- (d) Define median for the discrete random variable x, where $x \rightarrow (x_1, x_2, x_3...x_n)$
- (e) If $\log(64) = 2.64$, then find the value of $\log(16)$.
 - (f) Define simple arithmetic mean and simple geometric mean for two discrete random variables x_1 and x_2 .
- (g) Define variance of the discrete random variable x (Var(x)), where $x \rightarrow (x_1, x_2, x_3...x_n)$.
- (h) Consider the following set of data:

$$\begin{array}{c|c} x & f \\ \hline 2 & 3 \\ 2 & 1 \end{array}$$

2 2

- Find out the weighted geometric mean
- 2. Answer any four questions: (a) Show that AM>GM>HM, for x₁ and x₂ where
 - x1 and x2 are two discrete random variables, where AM = Arithmetic Mean, GM = Geometric Mean and HM = Harmonic Mean.

 4×4

- (b) Show that the logarithm of Geometric Mean (GM) of a set of variables is equal to the Arithmetic Mean (AM) of their logarithms.
- (c) Define mean deviation and standard deviation of x, where x is a discrete random variable and $x \rightarrow (x_1, x_2, x_3...x_n)$.
- (d) Show that variance of the discrete random variable x, Var(x) = (square of the average values of x Average of the squares of x), $x \rightarrow (x_1, x_2, x_3...x_n).$
- (e) Define Pearson's product-moment correlation coefficient and Spearman's rank correlation coefficient.
 - (f) Define one bit of information from the viewpoint of probability.
- (g) Define Pearsonian Chi Square. State the uses of Chi Square distribution.
- (h) Define class limit and class boundary.

3. Answer any two of the following questions: 8×2

(a) Show that
$$b_{yx}^{b}b_{xy} = (r_{xy})^{2}$$
 where $b_{yx} =$ Regression Coefficient of y on x and $b_{yx} =$ Regression Coefficient of x on y.

- (b) Show that R (Rank correlation coefficient) = $1-6*\sum d_i^2/(n^3-n)$, where i = 1, 2...n and di = $x_i y_i$, x and y indicate two different ranking from 1 to n.
- (c) Data given below show the age and h-index of six authors. Determine, with proper interpretation, whether any correlation exists between age and h-index.

Age	h-index
31	7
36	8
43	14
50	11
55	10
60	12

(d) Data given below show the number of vistiors and number of books issued for six days in a libary. Find out the number of visitors in a day when 20 books were issued.

No. of visitors	No. of books issued
20	17
22	18
25	22
23	23
26	24
28	25