M.Sc. 3rd Semester Examination, 2019 ELECTRONICS

(Communication System and Networking)

PAPER -ELC-302

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

- 1. Answer any four questions: 2×4
 - (a) Describe the operating principle of a monophonic FM receiver.
 - (b) Find the inverse Fourier transform of $\delta(2\pi t)$. 2
 - (c) Explain the principle of operation of a frequency converter.

(<i>d</i>)	Explain how PLL can be used in FM demo-	
	dulation.	

- (e) A signal m(t) of BW 4 kHz is transmitted using a binary compounded PCM with $\mu = 100$. Determine transmission bandwidth and output SNR if quantization level L = 256.
- (f) Discuss how can you demodulate a PPM signal.
 - (g) Write down the conditions of distortionless transmission for a LTI system.
 - (h) Determine power efficiency η and hence find out the percentage of the total power carried by the sidebands of the AM wave for tone modulation when $\mu = 0.5$ and 0.3.

2. Answer any four questions: 4×4

(a) The antenna current of an AM transmitter is 8A when only the carrier is sent, but it increases to 8.93 A when the carrier is modulated by a single sine wave. Find the percentage modulation. Also determine the

2

- antenna current when the percent of modulation changes to 0.8.
- (b) With a neat sketch explain the principle of operation of the phase-shift method used for SSB generation.
- (c) Discuss, how can you demodulate an AM signal using diode detector.
- (d) In case of VSB modulation prove that

$$Ho(f) = \frac{1}{Hi(f+h) + Hi(f-h)}$$

where Hi(f) is the transfer function of VSB shaping filter and Ho(f) is the transfer function of equilizer 1000 pass filter.

- (e) Write down the function of bandpass limitter in connection with Narrow Band FM(NBFM) generation.
- (f) Prove with proper mathematical calculation, that FM wave is more immune to non-linear distortion in comparison with AM wave.

4

- (g) State and prove the Nyquist sampling theorem.
- (h) Explain, the modulation and demodulation process of a QAM. 2+2
- 3. Answer any two questions:

(a) (i) Write down the differences between differential PCM and delta-modulation. Prove that quantization noise

 8×2

$$N_q = \frac{mp^2}{3I^2},$$

where the symbols have their usual meaning.

- (ii) What do you mean by compounding?
- (iii) Calculate the channel capacity of a 4 kHz telephone channel having 32 dB signal to noise ratio. (2 + 2) + 2 + 2
- (b) (i) With a neat sketch explain the Armstrong method of wideband FM generation.

- (ii) Design an Armstrong indirect FM modulator to generate an FM signal with carrier frequency 97.3 MHz and $\Delta f = 10.24$ kHz. A NBFM generator of $f_1 = 20$ kHz and $\Delta f = 5$ Hz is available. Only frequency doublers can be used as multipliers. Additionally a local oscillator (LO) with adjustable frequency between 400 and 500 kHz is readily available for frequency mixing. 4 + 4
- (c) (i) Write down the principle of operation of ASK, FSK and PSK systems with suitable sketch and diagrams.
 - (ii) Discuss the TDM methods used in telephone system. (2+2+2)+2
- (d) (i) Write down the differences between NRZ and RZ signal formats.
 - (ii) What do you mean by circuit-switching and packet switching?

(6)

(iii)Briefly discuss TCP/IP protocols.

2 + 2 + 4

[Internal Assessment: 10 Marks]