2019

MSc

2nd Semester Examination

ELECTRONICS

PAPER - ELC-202

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their

own words as far as practicable.

Illustrate the answers wherever necessary.

GROUP-A THEORY

1. ANSWER ANY FOUR QUESTIONS. (2x4)

- i) What is diffusion capacitance?How does it different from depletion capacitance?
- ii) Explain the operating principle of a varactor diode.
- iii) What do you mean by neutral level in connection with a metal semi conductor junction?
- iv) Derive the expression of pinch-off voltage of a MESFET.
- v) What do you mean by Gummel number of a BJT?
- Name the extrinsic and intrinsic small signal parameters of a field effect transistor.
- vii) Draw the LFCV and HFCV plot of a M-I-S DIODE and explain its nature of variation.
- viii) Discuss some short channel effects of MOSFETS.

GROUP B

2. ANSWER ANY FOUR QUESTIONS.

 Write a neat sketch discuss the mechanisms of field ionization and Input ionization associated with a P-N junction diode.

4

ii) Derive the expression of built-in-potential of a P-N junction diode.

4

iii) Draw the Ebers-Moll model of a P-N-P transistor and derive the expressions of emitter, collector and base current.

4

iv) For a metal semi conductor junction prove that $q(\phi_{bn} + \phi_{bp}) = E_g$ where the symbols have their usual meaning.

4

v) Explain how can you measure the barrier height of a metal- semi conductor Using (I) current voltage measurement method and (ii) Activation energy Measurement method.

2+2

- vi) For a metal semiconductor field effect transistor operated under electron velocity saturation prove that $|g_m|/|C_{gx}|=|V_xz|$, where the symbols have their usual meaning.
- vii) Prove that in a SCR

$$I_A = \frac{\alpha_2 Ig + Ico_1 + Ico_2}{1 - (\alpha_1 + \alpha_2)}$$

Where the symbols have their usual meaning.

4

viii) Show that saturation drain current of a MOSFET is given by $I_{Dsat} = \frac{mz}{L} \mu_n C_t (V_G - V_T)^2 \ \, \text{Where the symbols have their usual meaning}.$

GROUP C

3. ANSWER ANY TWO QUESTIONS.

i) Prove that in a MESFET drain conductance in lenear region in same as one mutual conductance in the saturation region.

8

8

8

8

ii) Prove that in case of a metal semi conductor junction current density

$$J = A * T^2 e^{-\frac{q \phi b n}{x'}} \left(e^{\frac{q v}{x''}} - 1 \right)$$

Where the symbols have their usual meaning.

- iii) Derive the expression of built —in —potential depletion layer width and junction capacitance of a linearly graded P-N Junction.
- iv) Show that in a M-I-S DIODE the differential depletion capacitance $\,C_n\,$ is given by

$$C_{D} = \frac{\epsilon_{s}}{\sqrt{2L_{n}}} \frac{\left[1 - e^{-\rho \eta s} + \frac{nPo}{Ppo} \left(e^{\rho \eta s} - 1\right)\right]}{F\left(\beta \psi_{s} - \frac{nPo}{Ppo}\right)}$$

Where the symbols have their usual meaning.

(Internal assessment -10 marks)