M.Sc. 1st Semester Examination, 2019 **ELECTRONICS**

(Electronic Materials)

PAPER - ELC-103

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

ĺ	Ii	llustrate the answers wherever necessary		
1.	Ans	swer any four questions:	2 ×	4
v. S	(a)	Mention different levels of structure materials.	of	2
	(<i>b</i>)	What is a Burgers vector?		2

(c) State the drawbacks of classical free electron theory of metals.

(d) How does the Hall mobility differ from drift mobility?	the 2
(c) Explain dielectric relaxation.	2
(f) How are ferrites superior to magninetals?	netic 2
(g) What is photoluminescence?	2
(h) Explain T-H-I diagram for superconduc	ctors. 2
Answer any four questions:	4 × 4
(a) Show that the number of Frenkel defect equilibrium at a given temperature proportional to $(NN_i)^{1/2}$, where N be number of atoms and N_i be the interstitial atom.	re is mber
(b) Obtain a general expression for Fermi er of electrons in solids at absolute zero.	
(c) Establish the Boltzmann transport equa	ation. 4
(d) Derive the Clausius-Mossotti expression dielectric materials in a static field.	on for 4

(e) Consider a gas containing N similar atoms per m^3 of a polarizability α . For the induced dipole moment resulting from an alternating field, show that the dielectric constant of the gas is given by

- (f) Explain the absorption of light by interband and intraband transitions.
- (g) What are the characteristics of ferromagnetic substances? The saturation magnetization of iron is 1.75×10^6 A/m. Assuming that the iron has a body-centred cubic structure with an edge-length of 2.87 Å, find the average number of Bohr magnetons contributing to the saturation magnetization per atom. $1\frac{1}{2} + 2\frac{1}{2}$
- (h) Show that the magnetic flux is confined to a hole in a superconductor.

3. Answer any two questions:

 8×2

- (a) What is meant by crystal imperfections?

 Describe with suitable diagrams edge dislocations and screw dislocations in crystal lattice.

 2+6
- (b) (i) Give a schematic sketch of the variation of the total polarizability of an atom as a function of the frequency, explaining the physical origin of the various contributions and the relevant frequency ranges.
 - (ii) Explain absorption of energy in dielectric and dielectric loss. (1+3)+4
- (c) (i) Describe the structure of ferrites. How is the magnetic moment of ferrite molecule calculated?
 - (ii) Give reason why in Fe₃O₄, some of the magnetic Fe²⁺ ions are replaced by non-magnetic ions such as Zn²⁺ or Cd²⁺, the magnetization increases. (3+3)+2