M.Sc. 1st Semester Examination, 2019 ELECTRONICS

(Network Analysis and Synthesis)

PAPER -ELC-102

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1.	Answer any four questions:		2 × 4
1	(a)	State and explain the superposition theorem	n.
() () () () () ()	(b)	What do you mean by critical frequencies of a driving point admittance function?	es 2
0 8 9 0 1	(c)	Write down the drawbacks of constant-k typ filters.	ie 2
i i	(d)	Explain the significance of the Pole-Zer	0 7

(e) Express the function

$$F(s) = \frac{(s+2)}{(s+1)^2}$$

in a partial fraction expansion.

(f) Find out the h-parameters of the following circuit.

(g) Comment of the following function Z(s) could be an impedance function or not?

$$Z(s) = \frac{15(s^3 + 2s^2 + 3s + 2)}{s^4 + 6s^3 + 8s^2}$$

(h) If the reduced incidence matrix of a network $\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & 0 \end{bmatrix}$. How many trees are possible?

2

2. Answer any four questions:

 4×4

(a) The following network is to have a pure resistance of $11k\Omega$ across the terminal a and b at a frequency of 10 kHz. Determine the values of R, L, and C.

(b) Apply the mesh methods to find out the current through resistance R_i .

(c) For the following network, write down the tie-set matrix and determine the KVL equations. Also calculate the loop currents. 4

- (d) Prove that for a reciprocal network AD BC = 1.
- (e) Using Laplace transform determine $i_2(t)$ in the following circuit when switch k is closed at t = 0.

4

- (f) Calculate the values of the shunt and the series elements of a high pass π -section filter having a cut-off frequency of 10 kHz. The nominal resistance of the filter is 500 Ω .
- (g) For the given denominator polynomial of a network function, verify the stability of the network using R-H criteria

$$Q(s) = s^4 + s^3 + 2s^2 + 2s + 12$$

(h) Find out the input impedence of the following network.

3. Answer any two questions:

- 8×2
- (a) (i) Determine $i_1(0+)$, $i_2(0+)$ and $i_3(0+)$ of the following circuit.

(ii) Let us consider two Network N_a and N_b are in parallel connection. The y-parameters of network N_a and N_b are

$$\begin{bmatrix} y_{11a} & y_{12a} \\ y_{21a} & y_{22a} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} y_{11b} & y_{12b} \\ y_{21b} & y_{22b} \end{bmatrix}$$
 respectively.

Prove that the y-parameters of the combined network

$$\begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{bmatrix} y_{11a} + y_{11b} & y_{12a} + y_{12b} \\ y_{21a} + y_{21b} & y_{22a} + y_{22b} \end{bmatrix}$$

$$4 + 4$$

(b) (i) Determine the resonant frequency, Q-factor at resonance and bandwidth of the following circuit.

(ii) Find the ratio of the voltage v_3 to the voltage v_1 , when phase difference between v_1 and v_3 is 180°

(c) (i) Use principle of superposition to find the current I in the following circuit.

(ii) For the following network determine fundamental cut-set matrix and hence find the KCL equation.

(d) (i) Determine y_{11} of the following Twin-T network.

(ii) Design a constant-K low pass T-section filter with nominal resistance of 50 Ω to produce cut-off at a frequency of 1.2 kHz. Find also the attenuation in dB at a frequency of 2kHz.

[Internal Assessment: 10 Marks]