2019

MSc

2nd Semester Examination

COMPUTER SCIENCE (THEORETICAL COMPUTER SC)

PAPER - COS-202(M1)

Full Marks: 25

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their Own words as far as practicable.

Illustrate the answers wherever necessary.

1. Answer any TWO questions:

2x2=4

- a) What do you mean by the Regular Expression (a/b) (a/b)?
- b) Define Mealy machine.
- c) Define Pumping Lemma.
- d) Write down the basic limitation of the finite state machine.
- 2. Answer any TWO questions:

2x4=8

a) Construct a DFA accepting all strings w over {a,b} such that the number of b's in w is divisible by 4.

4

b) Construct a Moore machine equivalent to the following Mealy machine.

4

Present State	Next State			
	a=0		a=1	
	State	Output	State	Output
q_1	$q_{_{\mathrm{l}}}$	1	q_2	0
q_2	$q_{\scriptscriptstyle 4}$	1	$q_{\scriptscriptstyle 4}$	1
q_{i}	q_z	1	4,	1
q_i	q_{s}	0	$q_{_1}$	0

c) Construct the regular expression corresponding to the following state diagram:

d) Construct a PDA which accepts the following context free language.

4

 $L = \{a^n b^m a^n \mid m, n \ge 1\}$

3. Answer any One question:

1x8

a) i) Construct the grammar accepting

 $L = \{a^n b^m c^m d^n \mid m, n \ge 1\}$

4+4

- ii) Classify grammar according to Chomsky. Give suitable example for each type.
- b) i) Prove that L= {ww | w∈ {a,b}* } is not regular.
 - ii) Construct a Turing machine that enumerates {0ⁿ 1ⁿ | n≥1}

[Internal Assessment: 05]