2019

MSc

2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-206

Full Marks: 25

Time: 1 Hour

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their

own words as far as practicable.

Illustrate the answers wherever necessary.

 Answer any TM 	10 questions
-----------------------------------	--------------

2x2

- a) Define order topology for a non empty set with an example.
- b) If $A \subset X$ such that a retraction of X onto A is a continuous map $r: X \to A$ satisfying r(a) = a or each $a \in A$. Then show that T is a quotient map.
- c) If Y is a subspace of a topological space X and Z is a subspace of Y, then show that Z is a subspace of X.
- d) Show that a subspace of a Hausdorff space is Hausdorff.
- 2. Answer any TWO questions:

2x4

- a) Show by an example that product of two Lindelöf space need not be Lindelöf.
- b) Show that \mathbb{R}^ω with respect to the uniform topology satisfies the first countability axiom but it does not satisfy the second countability axiom.
- c) If X is a compact Hausdorft space under both the topologies τ and τ' then show that either τ and τ' are equal or they are not comparable.
- d) Consider the set $\,\mathbb{N}\,$ of all natural numbers equipped with co-finite topology. Verify if this topological space is T_1 or T_2 .

- A. (i)Show that compactness property of a topological space implies limit point compactness, but not conversely.
 - (ii) Consider the product, uniform and box topologies on \mathbb{R}^ω . Under what topology or topologies the function $f\colon\mathbb{R}\to\mathbb{R}^\omega$ defined by $f(t)=\{t,2t,3t,...\}$ is continuous?
- B. (i) Write down the statement of the followings

(I) Urysohn Lemma. (II) Teitze Extension theorem

2

5

- (ii) Let X be metrizable topological space. Show that the followings are equivalent.
 - a) Every continuous function $\emptyset: X \to \mathbb{R}$ is bounded,

6

b) X is limit point compact.

[Internal Assessment: 5 Marks]