2019

MSc

2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-204 (CBCS)

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Statistical and Numerical Methods)

1. Answer any FOUR questions:

4x2

- a) Define truncation error.
- b) If $f(x)=4\cos x-6x$, find the relative percentage error in f(x) for x=0, when error in x is 0.005.
- c) Define regression equation and regression curve for set of bivariate data.
- d) Find the median of 33, 86, 68, 32, 80, 48, 70, 64.
- e) Find the position of a positive real root of $x^2-2x-2=0$.
- f) Are the two lines 2x+3y=7 and 3y-7x=2 regression lines? Give reasons.
- g) Give physical significance of the correlation co-efficient.
- h) Define null hypothesis.

2. Answer any FOUR questions:

4×4

a) The values of function f(x) are given for certain values of x:

x: 20 25 30 35 40 f(x): 30.5 34.5 40 47.75 59.25

Estimate the value of f(x) for x = 24, correct to three decimal places.

b) Compute f(x) from the following table:

x: -1 0 2 5 f(x): 9 5 3 15

- c) Find the value of $\int_1^2 \frac{dx}{x}$ by Trapezoidal rule by taking 4 equal subintervals.
- d) Explain the bisection method for computing a real root of an equation f(x)=0.
- e) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by Simpson's 1/3 rule by taking 6 equal subintervals.
- f) Solve by Gauss-elimination method, correct up to two significant figures.

$$8x + 2y - 2z = 8$$

 $x - 8y + 3z = -4$
 $2x + y + 9z = 12$

- g) Find y (0.15), from the equation $\frac{dy}{dx} = x^2 + y^2$, y (0) = 0, taking step length h = 0.05,by Euler's method, correct up to four decimal places.
- h) If two variables x and y satisfy the relation $y \approx -5 + 6x$, find the correlation coefficient between x and y.
- 3. Answer any TWO questions:

2x8

- a) Describes Newton-Raphson method to find a real root of the equation f(x) = 0, Where f(x) is continuous function of x. Give the geometrical interpretation of this method. Write the convergence criteria of this method.
- b) Compute y(0.3), from the equation $\frac{dy}{dx} = x y$, y(0)=1, taking step length h=0.1, by fourth order Runge-Kutta method, correct up to five decimal places.
- c) Deduce the equation of regression lines for a set of n bivariate data. Prove that Correlation coefficient of two variables is the geometric mean of the two regression coefficient.
- d) Describe Chi-square distribution and Student's t-distribution.

[Internal Assessment: 10 Marks]