2019

MSc

2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-203

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Unit-I)

(Abstract Algebra)

1. Answer any TWO questions:

2x2

- a) Define group action with an example.
- b) Write down the class equation of a finite group.
 ls 1+1+3+5=10, a class equation for a group of order 10? Justify your answer.
- c) Consider the group $G = Z_4 \times Z_6$. Let $H = ((\overline{0}, \overline{2}))$. Compute $\frac{a}{n}$.
- d) Show that a group of order 87 is abelian.
- 2. Answer any TWO questions:

2x4

- a) Define solvable group. Show that subgroup of a solvable group is solvable.
- b) Find the maximal ideals and the prime ideals in the ring $(\mathbb{Z}_{12}, +, \cdot)$.
- c) State Sylow's third theorem. Show that no group of order 63 is simple.
- d) If G is an abelian group having subgroup H_1 , H_2 , ..., H_t such that $|H_i \cap H_j| = 1$, for all $i \neq j$, then show that $K = H_1 H_2 \dots H_t$ is a subgroup of G of order $|H_1| \times |H_2| \times \dots \times |H_t|$ and $K \cong H_1 \times H_2 \times \dots \times H_t$.
- 3. Answer any ONE question:

1x8

- a) i) Show that in the ring ($\mathbb{Z} \times \mathbb{Z}$, +, .), the set $I = \{(X,0): X \in \mathbb{Z}\}$ is a prime ideal but not a maximal ideal. (5)
 - ii) Let $K \subseteq F$ be a field extension and $\alpha \in F$ be algebraic over K. Then show that there exists a unique monic irreducible polynomial $f(x) \in K[x]$ such that $f(\alpha) = 0$.
- b) i) Suppose G be a group of order p² q where p and q are distinct primes. Then show that G is not simple. (4)
 - ii) If $K \subseteq F \subseteq L$ is a tower of fields, then show that (4)

[L:F][F:K]=[L:K]

Where [L:F] denotes the degree of Lover F.

[Internal Assessment : 5 Marks]

(Unit-II)

(Linear Algebra)

(Notation and symbols have their usual meaning)

1. Answer any TWO questions:

2x2=4

- a) Define a Quotient space in linear algebra.
- b) Define a linear functional on a vector space with an example.
- c) Let T be a linear operator on finite-dimensional vector space V. When T is said to be diagonalizable?
- d) Define Jordan Block with an example or state Spectral Theorem in linear algebra.

2. Answer any TWO questions:

one or onto.

4x2 = 8

- a) Find all possible Jordan canonical forms for a linear operator T: V → V, where V is a finite dimensional vector space whose characteristic polynomial is (t-2)³ (t-5)⁵. In each case, find the minimal polynomial m(t).
- b) State and prove First Isomorphism Theorem in linear algebra.
- c) Let T: $M_{2,3}(F) \to M_{2,2}(F)$ be defined by $T \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} 2a_{11} a_{12} & a_{13} + 2a_{12} \\ 0 & 0 \end{pmatrix}$. Find the Null space of T and Range space of T. Determine whether T is one-to-
- d) Let P(t) be a minimal polynomial of a linear operator T on a finite dimensional vector space V. Then Prove the following.
 - for any polynomial g(t), if g(T)= T₀, then P(t) divides g(t). In particular, p(t) divides the characteristic polynomial of T.
 - ii) the minimum polynomial of T is unique.

3. Answer any ONE question.

1x8=8

(a) (I) Let T be a linear operator on a finite dimensional vector space V and let c be a scalar.

Then prove that the following are equivalent:

- (i) c is a characteristic value of T.
- (ii) The operator T cI is singular (not invertible).
- (iii) Det (T cI) = 0.
- (II). Let V be the vector space of all polynomial functions p form \mathbb{R} into \mathbb{R} (\mathbb{R} be the set of real numbers) which have degree 2 or less. Define three linear functional on V by $f_1(p) = \int_0^1 p(x)dx$, $f_2(p) = \int_0^2 p(x)dx$, $f_3(p) = \int_0^1 p(x)dx$. Show that $\{f_1, f_2, f_3\}$ is a basis of V*(dual basis). Determine a basis for V such that $\{f_1, f_2, f_3\}$ is its dual basis. (3+5=8)
- b) (i) Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively. Let $T:V\to W'$ be linear. Then show that T is invertible if and only if $\{T\}_{\alpha}^{\mathbb{F}}$ is invertible. Further show that $\{T^{-1}\}_{\alpha}^{\mathbb{F}} : \{[T]_{\alpha}^{\mathbb{F}}\}^{\perp}$
 - (ii) Define the characteristic value and characteristic vector of a linear operator on a vector space. (6+2=8)

[Internal Assessment: 05 Marks.]