M.Sc. 3rd Semester Examination, 2019

MATHEMATICS

(Discrete Mathematics)

PAPER -- MTM-304

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any four questions:

 2×4

(a) Define the terms eccentricity and center in a tree.

- (b) Prove that if in a graph G there is one and only one path between every pair of vertices, G is a tree.
- (c) Define generating function and find a closed form for the generating function of the sequence 1, 2, 3, 4,
- (d) Define language with an example.
- (e) Prove the absorption law $a + (a \cdot b) = a$ in a Boolean algebra, B for all $a, b \in B$.
- (f) Explain spanning tree of a connected graph G.
- (g) Write the duality principle in Boolean algebra. Find the dual of the Boolean expression xy(y+y'z)+x'z.
- (h) Define chain and antichain with example.
- 2. Answer any four questions: 4×4
 - (a) Define degree of a vertex. Prove that in any graph the number of vertices of odd degree is even.

- (b) Explain binary tree. Find the number of pendant vertices in a binary tree with n vertices.
- (c) State and prove De-Morgan's law in a Boolean algebra.
 - (d) Define poset show that the set Z^{+} of all positive integers under divisibility relation forms a poset.
 - (e) Convert the Boolean function

$$f(x,y,z) = (x'+y+z')(x'+y+z)(x+y'+z)$$

in disjunctive normal form.

- (f) Show that every tree has either one or two centre.
- (g) Using mathematical induction, show that

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}.$$

(h) Define finite-state machine (FSM). Let M be the FSM with state table appearing as

		f			g		
Σ	a	b	С	а	b	С	
s_0	s_0	s_1	s ₂	. 0	1	0	
s_1	s_1	s_1	So	l	1	1	
s_2	s ₂	s_1	s_0	1	0	0	

- (i) Find the input set Σ , the state set S, the output set O, and initial state of M.
- (ii) Draw the state diagram of M.
- (iii) Find the output string for the input string aabbcc.

3. Answer any two questions:

 8×2

(a) Define planar graph. Prove that a connected planar graph with n vertices, e edges has (e-n+2) faces. Also, show that a simple connected planar graph has at least one vertex of degree 5 or less.

- (b) State the principle of inclusion-exclusion. Use the principle of inclusion-exclusion, to find the number of primes less than 100.
- (c) Define phrase-structure grammar. Describe the classification scheme of phrase-structure grammar introduced by Noam Chomsky.
- (d) Determine the generating function of the following sequences:

(i)
$$a_r = (x+1)3^r$$

(ii)
$$a_r = 5^r + (-1)^r 3^r + 8^r + {}^3C_r$$
.

[Internal Assessment: 10 Marks]