M.Sc. 1st Semester Examination, 2019

MATHEMATICS

PAPER -MTM-106

Full Marks: 25

Time: 1 hours

Answer all questions

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any two questions:

- 2×2
- (a) Describe spanning tree of a connected graph G.
- (b) Prove that there is one and only one path between every pair of vertices in a tree T.

- (c) Define isomorphic graph and give an example.
- (d) Find the digraph whose adjacency matrix is

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 0 & 0 \end{pmatrix}.$$

2. Answer any two questions:

 4×2

- (a) Define circuit of a graph G and prove that a circuit free graph with n vertices and (n-1) edges is a tree.
- (b) Explain fundamental cut-set. With respect to a given spanning tree T, show that each branch determines a fundamental cut-set S, which is contained in every fundamental circuit associated with the chords in S and in no others.
- (c) Show that a simple connected planar graph with 6 vertices and 12 edges, each of the face is bounded by 3 edges.

(d) Prove that the graph $K_{3,3}$ and K_5 are not planar.

3. Answer any one question:

 8×1

- (a) (i) State and prove Euler's theorem for a connected planar graph.
 - (ii) Show that a simple graph with n vertices and m components can have atmost $\frac{1}{2}(n-m)(n-m+1)$ edges.
- (b) Describe four-colour problem in graph theory. Consider the graph shown in figure, find the number of walks of length three from V_2 to V_4 and also check the connectedness of the graph. 3+5

[Internal Assessment: 5 Marks]