2019

MSc

2nd Semester Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-201

Full Marks: 50 marks

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(FLUID MECHANICS)

- 1. Answer any **FOUR** questions out of **EIGHT** questions: 4x2 = 8
 - a) The velocity components for two-dimensional incompressible steady flow are given as $u=3x^2-2xy$ and $v=y^2-6xy$. Show that such a motion is possible.
 - Draw an infinitesimally small moving element and show all the energy fluxes along x-direction associated with the above element.
 - Distinguish between laminar and turbulent flows.
 - d) Assuming the velocity profile

$$\frac{u}{v_{\infty}}$$
 = 2 $\frac{y}{\delta}$ - $\left(\frac{y}{\delta}\right)^2$, determine the energy thickness.

- e) Approximate the boundary layer equations outside the boundary layer.
- f) Arrange the velocities (x- and y- components) and pressure in the Staggered Gird and then write the advantage – disadvantage of this arrangement.
- g) Show the geometric interpretation of forward, backward and central differences for $\frac{dy}{dx}$ graphically as a slope.
- h) Using the general technique, derive the expression for $\frac{dy}{dx}$ at $x=x_i$ in terms of y_{ij} y_{i+1} & y_{i+2} .
- 2. Answer any FOUR questions out of EIGHT questions: $4 \times 4 = 16$
 - Derive Euler's equations of motion for a two-dimensional flow in the presence of external body force.
 - b) Write down all the possible boundary conditions for tangential and normal component of velocity and temperature.

- The velocity distribution for fluid flow over a flat plate is given by $u = \frac{1}{2}y y^{3/2}$, then determine the shear stress at a point where the velocity is maximum.
- d) What do you mean by analytical/exact solution of Navier-Stokes Equation? With the necessary assumptions, find the exact solution for the case of Couette flow.
- e) Write down the complete Navier-Stokes equations in conservation form for compressible flow, and then reduce these equations for incompressible flow. Finally write down these equations, for later case, in vector form.
- f) Draw the flow chart of solution process of finite difference method (FDM) of an unsteady flow problem.
- g) Discretize the one dimensional transport equation $\frac{\partial T}{\partial t} + \alpha \frac{\partial T}{\partial x} = \alpha \frac{\partial^2 T}{\partial t^2}$, where a and α are constants, using Crank-Nicolson scheme and hence write the algebraic expression in a matrix form for the case of Neumann boundary conditions.
- h) Write the algebraic formula for $\frac{dy}{dx}$ using forward, backward, central, and three points asymmetry forward as well as backward schemes. Also write the order of accuracy of these schemes.
- 3. Answer any TWO questions out of FOUR questions: 2x8= 16
 - (a) (i) What are the observations of Ludwig Prandtl for boundary layer theory?
 - (ii) Based on the above observations, derive the set of governing equations for the boundary layer flow along a flat plate. Write down the proper boundary conditions for the above set of equations. [2+6]
 - (b) (i) Write down the x-component of Navier-Stokes equation and energy equation for Newtonian, incompressible, viscous fluid flow with negligible gravity and radiation effects.

- (ii) Make the above equations in non-dimensional form (Navier-Stokes equation in terms of Reynolds number Re = $\frac{UL}{\gamma}$, and energy equation in terms of Re and Prandtl number Pr = $\frac{\gamma}{\alpha}$) with the help of characteristics length, velocity, pressure and temperature as L, U, ρU^2 and $T_w T_c$, respectively, where symbols have their usual meaning. [2+6]
- (c) Discretize the heat conduction equation $\frac{\partial \tau}{\partial t} = \alpha \frac{\partial^2 T}{\partial t^2}$ using FTCS (forward time central space), DuFort-Frankel and three-time fully implicit schemes followed by their leading term of truncation error and stability restriction. [8]
- (d) Consider steady, laminar, fully developed flow between two parallel plates separated by a distance 2H. The fluid is driven between the plates by an applied pressure gradient in the xdirection. It is assumed that conduction in the y-direction is much greater than conduction in x-direction.
 - Determine the fully developed velocity distribution of the fluid as a function of the mean velocity.
 - Determine the fully developed temperature distribution as a function of the surface and mean temperatures. [5+3]

[Internal Assessment: 10 Marks]