## M.Sc. 1st Semester Examination, 2019 MATHEMATICS

(ODE and Special Functions)

PAPER -MTM-103

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

1. Answer any four questions:

- $2 \times 4$
- (a) Examine that whether infinity is a regular singular point for Bessel's differential equation or not.
- (b) Define the utility of Wronskian in connection with ODE.

(c) Find all the singularities of the following differential equation and then classify them:

$$(z-1)\frac{d^2w}{dz^2} + (\cot \pi z)\frac{dw}{dz} + (\csc^2 \pi z)w = 0$$

- (d) Define ordinary point and regular singular point in connection with a second order differential equation.
- (e) Define eigenvalues and eigenfunctions associated with Sturm-Liouville problem.
- (f) When a boundary problem is a Sturm-Liouville problem.
- (g) Write down the hypergeometric series represented by F(a, b, c; z). Prove that

$$F(1,b,b;z) = \frac{1}{1-z}$$
.

(h) Show that

$$\int_{-1}^{1} P_n(z) dz = \begin{cases} 0, & n \neq 0 \\ 2, & n = 0 \end{cases}$$

where the symbol has the usual meaning.

## 2. Answer any four questions:

 $4 \times 4$ 

(a) Show that  $J_0(kz)$  where k is a constant, satisfies the differential equation

$$xy''(x) + y'(x) + k^2xy = 0.$$

- (b) Construct Green's function for the differential equation xy''(x) + y'(x) = 0, with the following conditions: y(x) is bounded as  $x \to 0$ , y(1) = ay'(1),  $a \ne 0$ .
- (c) Prove that

$$\int_{-1}^{1} P_m(z) P_n(z) dz = \frac{2}{2n+1} \delta_{mn},$$

where  $\delta_{mn}$  and  $P_n(z)$  are the Kroneker delta and Legendre's polynomial respectively.

(d) Let  $y_1(x)$  and  $y_2(x)$  be two linearly independent solutions of  $x^2\ddot{y} - 2x\dot{y} - 4y = 0$ , for all x in [0, 10]. Consider the Wronskian  $W(x) = y_1(x)y_2'(x) - y_1'(x)y_2(x)$ , If W(1) = 1 then find the value of W(3) - W(2).

(e) Show that

$$J_{\frac{1}{2}}(z) = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \sin(z) \text{ and}$$

$$J_{-\frac{3}{2}}(z) = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \left[-\frac{\cos(z)}{z} - \sin(z)\right].$$

(f) Let  $P_n(z)$  and  $Q_n(z)$  be the two solutions of the Legendre's differential equation. Prove that

$$(1-z^2)\left[P_n(z)\frac{d}{dz}\left\{Q_n(z)\right\}-Q_n(z)\frac{d}{dz}\left\{P_n(z)\right\}\right]$$
 is a constant.

(g) If the vector functions  $\varphi_1, \varphi_2, ..., \varphi_n$  defined as follows:

$$\phi_{1} = \begin{bmatrix} \phi_{11} \\ \phi_{21} \\ \vdots \\ \phi_{n1} \end{bmatrix}, \phi_{2} = \begin{bmatrix} \phi_{12} \\ \phi_{22} \\ \vdots \\ \phi_{n2} \end{bmatrix}, ...\phi_{n} = \begin{bmatrix} \phi_{1n} \\ \phi_{2n} \\ \vdots \\ \phi_{nn} \end{bmatrix}$$

be n solutions of the homogeneous linear

differential equation  $\frac{dx}{dt} = A(t)x(t)$  in the interval  $a \le t \le b$ , then these *n* solutions are linearly dependent in  $a \le t \le b$  iff Wronskian  $W[\varphi_1, \varphi_2, ..., \varphi_n] = 0 \forall t$ , on  $a \le t \le b$ .

(h) Find the characteristics values and characteristic functions of the Sturm-Liouville problem

$$(x^3y')' + \lambda xy = 0; \ y(1) = 0, \ y(e) = 0.$$

3. Answer any two questions:

 $8 \times 2$ 

3

- (a) (i) Deduce the integral formula for confluent hypergeometric function.
  - (ii) Find the general solution of the nonhomogeneous system

$$\frac{dX}{dt} = \begin{pmatrix} 6 & -3 \\ 2 & 1 \end{pmatrix} X + \begin{pmatrix} e^{5t} \\ 4 \end{pmatrix}$$

where 
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
.

5

(b) (i) Let the Legendre's differential equation is of the form  $(1 - z^2)w''(z) - 2zw'(z) + n(n+1)w(z) = 0$ . The *n*th degree polynomial solution  $w_n(z)$  such that  $w_n(1) = 3$ . If

$$\int_{-1}^{1} \left[ w_n^2(z) + w_{n-1}^2(z) \right] dz = \frac{144}{15},$$

then find the value of n.

(ii) If  $\alpha$  and  $\beta$  are the roots of the equation  $J_n(z) = 0$  then show that

$$\int_0^1 J_n(\alpha z) J_n(\beta z) dz = \begin{cases} 0, & \text{if } \alpha \neq \beta \\ \frac{1}{2} [J'_n(z)]^2, & \text{if } \alpha = \beta \end{cases}$$

(c) (i) Obtain the first five terms in the expansion of the following function f in terms of Legendre's polynomial

$$f(x) = \begin{cases} 0, & \text{if } -1 < x < 0 \\ x, & \text{if } 0 < x < 1 \end{cases}$$

(ii) Prove that

$$\frac{d}{dz}\left[z^{-n}J_n(z)\right] = -z^{-n}J_{n+1}(z),$$

where  $J_n(z)$  is the Bessel's function.

(d) (i) Find the general solution of the equation

$$2z(1-z)w''(z) + w'(z) + 4w(z) = 0$$

by the method of solution in series about z = 0, and show that the equation has a solution which is polynomial in z.

(ii) Show that

$$nP_n(z) = zP'_n(z) - P'_{n-1}(z),$$

where  $P_n(z)$  denotes the Legendre Polynomial of degree n.

[ Internal Assessment: 10 Marks]

5