PG/IIS/CEM-204/15

M.Sc. 2nd Semester Examination, 2015

CHEMISTRY

PAPER – CEM- 204

Full Marks: 40

Time : 2 hours

Answer any four questions

The figures in the right hand margin indicate marks All symbols are of usual significance

1.	(<i>a</i>)	Differentiate between	3
		(i) Extraction and Leaching	
	•	(<i>ii</i>) Adsorption and Desorption.	
	(b)	State and explain Fick's law of diffusion.	2
	(c)	Explain the term molecular diffusion and Eddy diffusion.	3
	(<i>d</i>)	Show that $D_{AB} = D_{BA}$.	2

(Turn Over)

2. (a) Alcohol vapour is diffusing through a layer of water vapour under equimolar counter diffusion at 35°C and 1 atm. pressure. The molar concentration of alcohol on the two sides of the gas film (water vapour) 0.3 mm thick are 80% and 10% respectively. Assuming the diffusivity of alcohol-water vapour to be 0.18 cm²/s. (i) Calculate the rate of diffusion of alcohol and water vapour in kg/hr through on area of 100 cm²; (ii) if the water vapour layer is stagnent, estimate the rate of diffusion of alcohol vapour.

- (b) Ammonia diffuses through nitrogen gas under equimolar counter diffusion at a total pressure of 1.013×10^5 Pa and at a temperature of 298 K. The diffusion path is 0.15 m. The partial pressure of ammonia at are point is 1.5×10^4 Pa and at the other point is 5×10^3 Pa. Diffusivity under the given condition is 2.3×10^{-5} m²/s. Calculate the flux of ammonia.
- 3. (a) Comment on the origin of coal.

PG/IIS/CEM-204/15

(Continued)

4

3

6

	(<i>b</i>)	Discuss the significance various parameters in proximate analysis of coal.	3
	(c)	Define crude petroleum.	2
•	(<i>d</i>)	Write the function of desalting operation of crude oil.	2
4.	(<i>a</i>)	Define fuel and mention about its classification.	2
	(b)	Discuss the charcoal manufacturing process.	2
	(c)	Write the function of carbonization of coal.	2
	(<i>d</i>)	Differentiate the thermal and catalytic cracking process.	2
	(e)	Write the reactions and operating conditions of the Fischer-Tropsch process.	2
5.	(<i>a</i>)	What are the available refractory materials ?	3
PG/I	IS/CE	M-204/15 (Turn Ov	er)

(3)

(4)

- (b) For the liquid phase zero-order reaction A→B, the conversion of A in a CSTR is found to be 0.3 at a space velocity of 0.1 min⁻¹. What will be the conversion for a PFR with a space velocity of 0.2 min⁻¹? Assume that all the other operating conditions are same for CSTR and PER.
- (c) Discuss the flow pattern in ideal PFR and CSTR reactor.

PG/IIS/CEM-204/15

MV-200

4

3

(5)