PG/IIS/CEM-203/15

M.Sc. 2nd Semester Examination, 2015

CHEMISTRY

(Inorganic)

PAPER - CEM - 203

Full Marks: 40

Time : 2 hours

Answer any five questions taking at least two from each Group-A and Group-B

The figures in the right-hand margin indicate marks

GROUP-A

1. (a) Discuss the binding modes of 'alkene' ligand in 'transition metal alkene' completes. 2

(Turn Over)

"In the above reaction, the attack of hydride ion at on η^2 -coordinated alkyne can lead to η^3 -allyl complex". Suggest the mechanism of this transformation.

- (c) Complete the following reactions : (*i*) $[CpNi(CO)_{2}] + RC \equiv CR$ -(ii) $(CH_3CN)_3W(CO)_3 + PhC \equiv C - Ph \frac{EtOH}{Reflux}$ (iii) $CO_2(CO)_8 \frac{t-Bu C \equiv P}{THF}$
- (a) Discuss the possible orbital interaction in 2. 'Fischer's Carbene' Complex. 2

 $T = < 25^{\circ}C$

- (b) Why NMR Spectroscopy is used to detect flxional behaviour?
- (c) Justify the 1, 2-migration mechanism in the "ring wizzing" of η^{1} - Cp in $[Fe(\eta^5 - Cp)(CO)_2(\eta^1 - Cp)]$ complex with respect to NMR-spectroscopy.

PG/IIS/CEM-203/15

(Continued)

2

3

3

3

E,		and a second	
	(<i>d</i>)	Write down the complete reaction when molybdenum-hexacarbonyl is refluxed with norborancdiene in octane media.	1
3.	(a)	Write short note on the "Irving Williams" order of stability constant for metals ion.	2
	(b)	Describe the determination of stability constant by Job's method.	3
	(c)	Silver forms a $1:1$ complex with ethylenediamine having a formation constant of $5 \cdot 0 \times 10^4$. Calculate the concentration of silver ions in equilibrium in a solution containing 0.1 M each of the complex and the ligand.	3
4.	(a)	How can you derive the stability constant of ternary complexes by simultaneous equilibria method ?	2

(b) Calculate the concentration of free Ca^{2+} ions

PG/IIS/CEM-203/15

(Turn Over)

(c) Complete the following reactions :

GROUP-B

5. (a) Dtermine the characters of the irreducible representations of $C_{4\nu}$ point group. Write the appropriate Mulliken Symbols for these irreducible representations. Transformation

PG/IIS/CEM-203/15

(Continued)

matrices for x and y give an E symmetry species, and z transforms as the A_1 species in $C_{4\nu}$ point group. Find out how xy and $x^2 - y^2$ functions individually transform in $C_{4\nu}$ point group. 3 + 3

(b) The ground state of NO_2 is A_1 . To what excited states may it be excited by electric dipole transitions, and what polarization of light is it necessary to use? Given below the character table for $C_{2\nu}$ point group.

C_{2v}	E	$C_2(z)$	$\sigma_{\nu}(xz)$	$\sigma'_{v}(yz)$		
A _i	1	1	1	1	z	x^2, y^2, z^2
A_2	1	ļ	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	x, R_y	xz
B_2	1	-1	-1	1	y, R_x	yz

6. Using molecular orbital theory derive the expressions for the energy of symmetric and antisymmetric states of H_2^+ ion. Deduce the expressions for symmetric fuction and antisymmetric function of H_2^+ ion. Show electron

PG/IIS/CEM-203/15

(Turn Over)

2

distribution of symmetric and antisymmetric states of this ion. (Derivation of secular determinant is not required). 4+3+1

- 7. (a) Investigate whether an A_1 electron in H_2O can make an electric dipole transition to a B_1 orbital. What polarized radiation will emitted or absorbed during this transition (Use the character table of C_{2v} point group given in **Q. No.5**) 2
 - (b) Show that p_x and p_y orbitals provide basis for B_1 and B_2 representation for C_{2v} point group. (Use character table of C_{2v} point group given in **Q.No.5**)
 - (c) Show that the representation of a direct product, Γ_{AB} , will contain the totally symmetric representation only if the irreducible Γ_{A} = the irreducible Γ_{B} .
 - (d) Explain why the polarization effect is not observed in cubic or higher symmetry molecule.

PG/IIS/CEM-203/15

(Continued)

2

2

2

(7)