M.Sc. 1st Semester Examination, 2015

CHEMISTRY

PAPER - CEM-101

Full Marks: 40

Time: 2 hours

Answer five questions taking one question from each Group

The figures in the right-hand margin indicate marks

GROUP-A

1. (a) State the rules of Convergence/Divergence of an infinite series in comparison test method. Use comparison test to show, wheather the following series Converges or Diverges.

$$1 + 2! + 3! + 4! + 5! + \cdots$$

(b) Wave function for particle in a 1-dim box of length, a at n = 1 state is given by

$$\psi(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$$

Find the value of 'x' for which $\psi(x)$ is maximum. 5+3

2. Find the Fourier series of the periodic function defined as,

$$f(x) = \begin{cases} -\pi; & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$$

Hence deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
 5 + 3

3. (a) Show that time evolution of the expectation value of an operator, D of a system is given by the following expression,

$$\frac{d\langle D\rangle}{dt} = \frac{1}{i\hbar} \langle [D, H] \rangle$$

All the symbols have their usual significances. Assume operator, D has no explicit time dependence.

(b) A particle in the infinite square well has the initial wave function,

$$\psi(x,0) = A x(a-x) \quad 0 \le x \le a$$

where 'A' is the normalization constant. Find $\psi(x, t)$.

4. Deduce Schwartz inequality relation. Use this principle to obtain Heisenburg uncertainty relation for two non-commutating Hermitian operator.

3+5

GROUP-C

- 5. (a) Derive Sackur-Tetrode equation for entropy.
 - (b) What is meant by thermodynamic probability? 6+2
- 6. (a) What is microcanonical ensemble?
 - (b) "β can be negative" Justify.

(c) The rotational constant of gaseous HCl, determined from microwave spectroscopy, is 10.59 cm⁻¹. Calculate the rotational partition function of HCl at 500 K. 2+3+3

GROUP-D

- 7. (a) Derive the expression for ion association constant considering Bjerrum's model of ion-pair formation.
 - (b) What are the disadvantages of Debye-Hückel theory? 6÷2
- 8. (a) In what type of system, one can measure the practical system of activity coefficient? Describe a suitable method for determination of activity when the dissolved solute is volatile.
 - (b) Calculate the entropy change accompanying the conversion of 1 mole of ice at 273.1 K and 1 atm. pressure into steam at 373.1 K

and 1 atm. pressure. Given that at 273·1 K, the molar heat of fusion of ice $\Delta H_{\rm fus}$ is 6·00 kJ mol⁻¹ at 373·1 K, the molar heat of vaporization of water $\Delta H_{\rm vap}$ is 40·60 kJ mol⁻¹. Assume that the molar heat capacity, C_p , in the temperature range 373·1-273·1 K remains constant at 75·2 JK⁻¹ mol⁻¹. (1+4)+3

GROUP-E

- 9. What is meant by homogeneous and inhomogeneous broadening of spectral lines? Deduce an expression to show that Doppler broadening of spectral lines are proportional to \sqrt{T}/M , where 'T' and 'M' are absolute temperature and molecular mass of molecule.
- 10. (a) Describe the principle involved for the determination of bond lengths of a linear triatomic molecule using its rotational spectral data.

- (b) Justify or criticize the following:
 - (i) Frequency of rotation of a rigid diatomic molecule decreases with the increase of rotational quantum number.
 - (ii) Amplitude of vibration of a linear Harmonic Oscillator increases with the increase of vibrational quantum number. 4+(2+2)