Total Pages-15

PG/IVS/CEM-402/15

M.Sc. 4th Semester Examination, 2015

CHEMISTRY

PAPER - CEM- 402

Full Marks: 40

Time : 2 hours

The figures in the right hand margin indicate marks

(Inorganic Special)

Answer any five questions taking at least two from each Group

GROUP -A

1. (a) Calculate the bond valence in the following transition metal cluster compounds : 2×2

- (*i*) $[Nb_6(\mu_2 Cl)_{12}Cl_6]^{4-}$
- (*ii*) $\operatorname{Co}_{2}(\mu_{2}-\operatorname{CH}_{2})(\mu_{2}-\operatorname{Co})(C_{p}^{*})_{2}$

(Turn Over)

	(b) $[Rh_{11}(CO)_{23}]^{3-}$ displays a structure with three face sharing octahedra ($g = 148, b = 25$). Draw the metal core structure for this cluster.	2
	(c) '[Os ₂ Cl ₈] ²⁻ displays staggered structure'- Explain.	2
2.	(a) Show the orbital overlap in 'tetragonal prismatic structure' in a metal-metal bonded species.	3
	(b) What do you mean by 'Aurophilicity'? Explain with example.	3
÷	(c) Give a brief account on 'quintuple bond'.	2
3.	(a) What is the active site structure of the enzyme 'Xanthine Oxidase'?	2
	(b) Give the mechanism involved in the oxidation of Xanthines to uric acids.	2
	 (c) Draw the active site structure of SOD. Explain the mechanism of oxidation of ascorbic acid to dehydro-ascorbic acid. 2 	+ 2
PC	/IVS/CEM-402/15 (Continu	ued)

.

- (a) What is 'nitrate reductase'. Write down the
- active site structure and discuss the mechanistic pathway of nitrate reduction. 1+2+2

(b) Show the structure of 'Cobalamine' and explain its activity.

GROUP -- B

5. (a) Justify the structure of the following Cluster compounds with respect to the number of valence electrons : 2 × 2

<u>Cluster</u>

Structure

- (i) $Os_5(CO)_{19}$ 'Bow-tie'
- (*ii*) $Os_5(CO)_{18}$

'Raft'

(b) How will you synthesize $Rh_4(CO)_{12}$ starting from $Rh_2(\mu-Cl)_2(CO)_4$? Draw the structure of $Rh_4(CO)_{12}$.

PG/IVS/CEM-402/15

4.

(Turn Over)

3

(c)	Predict the structure of $Fe_4C(CO)_{13}$.	1
	Draw the active site structure of cytoc $p-450$ and write down the mech pathway of hydroxylation activity.	anistic
<i>(b)</i>	Write short notes on :	2+2
	(i) Chlorophyll	
	(ii) PS-I and PS -II in Photosynthesis	
7. (<i>a</i>)	Discuss the 'semibridging binding mo	de' of
7. (u)	CO in Fe ₂ (CO) ₇ (4, 4' – bipy).	3
<i>(b)</i>	Cite one complex where CO acts	as 6e'-
	donor. Show the binding mode of CO	
	complex.	2
(c)	Removal of all CO ligands in a tra	
	metal carbonyl complex is rarely pos Justify.	sible'— 2
<u>ر</u> ۲	How will you synthesize Na ₂ [Fe(Co	D),]? 1

.

· · ·

8.	(a)	Write down the basic principle involved in Mössbauer spectroscopy.	2
	(<i>b</i>)	Define self-assembly.	2
	(c)	What do you mean by ion-ion interaction and ion-dipole interaction.	2
	(<i>d</i>)	What is van der Waals interaction in supramolecular chemistry?	2
	1	(Organic Special)	
	:	Answer any five questions taking at least two from each Group	
		GROUP – A	
•	(a)	Define self-assembly ?	2
	(b)	What type of interaction are involved in the self-assembly process?	2
	(c)	Write the different types of supramolecular structures that can form by self-assembly.	·2
G/I	IVS/CI	EM-402/15 (Turn Ov	er)

•

•

(5)

	(<i>d</i>)	Write the applications of self-assembled structures (at least four).	2
2.	(a)	What is a 'supramolecular gel' and how is it formed?	2
	(b)	What are the major differences between a 'supramolecular' and a 'polymeric' gel?	2
	(c)	Give some examples of Low Molecular Mass Organogelators.	2
	(<i>d</i>)	How can one study the morphology of a supramolecular gel ?	2
3.	(a)	What is self-replication ?	2
•	(b)	Write briefly the significance of such studies.	2
	(c)	Propose a self-replicating scheme based on a model compound and explain how a simple	
		template molecule can amplify.	4

PG/IVS/CEM-402/15

(Continued)

4. The following compound, Vit. B_1 on treating gives the products as follows :

$$C_{12}H_{18}Cl_{2}N_{4}OS \xrightarrow{SO_{2}} C_{6}H_{9}NOS + C_{6}H_{9}N_{3}O_{3}S$$

Na₂SO₃, room temp. (A) (B)

Identify the compound (A) and (B) and establish the structure of Vit. B_1 .

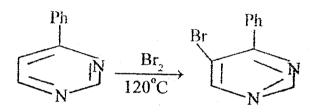
- 5. (a) Write down the structures of (i) NAD and (ii) FAD and show their chemical mode of action in biological systems.
 - (b) Show how coenzyme of Vit. B_1 takes part in decarboxylation of pyruvic acid, the end product of carbohydrate metabolism and depict the chemical reactions involved therein.

GROUP -- B

6.

(a) Write the principles of green chemistry.

PG/IVS/CEM-402/15

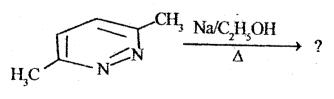

(Turn Over)

8

4

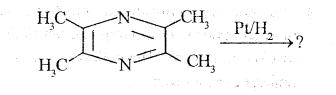
4

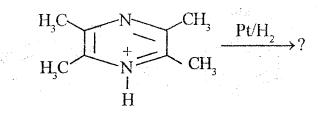
(b) "Nucleophilic substitution reactions are more common than electrophilic substitution in diazine system. The following reaction undergoes as shown;

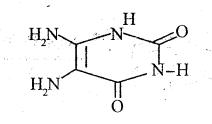


Depict the mechanism of the reaction and state what kind of reaction path is followed during the transfunction.

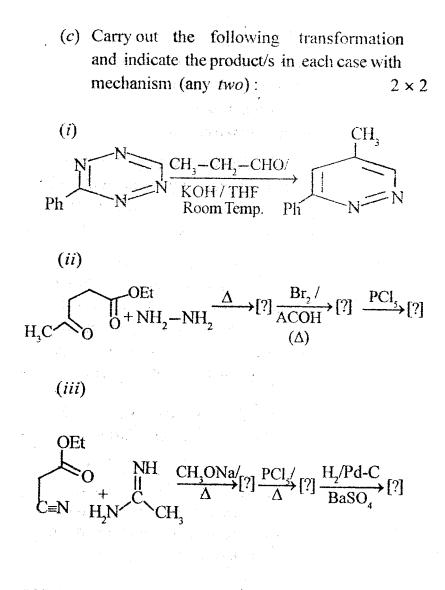
3


(Turn Over


(c) What would be the product/s when treated as follows and indicate the reason with explanation: $1\frac{1}{2} \times 2$


PG/IVS/CEM-402/15

(10)


- 10. (a) Synthesise the sedative drug, pentothal starting from Ethyl isopentyl diethyl malonate and thiourea.
 - (b) Synthesis sulphapyrazine, an antibacterial drug from glyoxal and

PG/IVS/CEM-402/15

(Continued)

2

PG/IVS/CEM-402/15

(Turn Over)

(11)

(Physical Special)

Answer any four questions taking at least two from each Group

GROUP-A

Answer any two questions

- (a) What type of molecular weight is determined by sedimentation equilibrium method and how? Why is it more advantageous than sedimentation velocity method? 1+5+1
 - (b) Calculate the molar mass of haemoglobin from the fact that in an equilibrium ultracentrifuge experiment at 20°C, $c_2/c_1 = 9.40$, $r_1 = 5.5$ cm and $r_2 = 6.5$ cm. The ultracentrifuge rotor is operated at 120 rps. $\overline{v} = 0.749$ cm³ g⁻¹ and $\rho = 0.9982$ g cm⁻³.
- 2. (a) Derive Flory-Huggins equation for the vapour pressure of a polymer solution.
 - (b) The molar mass M_m of haemoglobin is 64,450 g mol⁻¹. If it contains 0.35 mass percent of Fe, what is its minimum molar mass? Also, calculate the number of Fe atoms present in haemoglobin?

PG/IVS/CEM-402/15

(Continued)

3

8

3. Write down the basic principle of chromatographic separation of the proteins. What is the basic difference in between the ion-exchange chromatography and affinity chromatography? What is HPLC (high pressure liquid chromatography) and why do this method give high resolution of protein components? 3+4+3

4. What is meant by entropy production is an irreversible process? Illustrate your answer with respect to heat flow. Establish Prigogene's principle of minimum entropy production. 2+3+5

GROUP – B

Answer any two questions

5. Derive the expression for the rate of entropy production for any electrokinetic process where an electric potential difference causes a pressure difference. Define any one such phenomenon in term of the phenomenological coefficients. 8+

8 + 2

PG/1VS/CEM-402/15

(Turn Over)

- 6. (a) Why in normal cases the frequency of γ emission of a excited radio nucleus is not equal to that of frequency of reabsorption of that nucleus ?
 (b) What do you mean by 'Doppler effect' ? The half-life of ⁶⁷Zn nucleus is 9400 ns.
 - Calculate the line-width of γ -ray emission. (c) Give an estimate of the valence state of an unknown tin compound using Minet
 - unknown tin compound using Mössbauer isotope¹¹⁹Sn.
 - (d) Explain why Mössbauer spectra of $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_5NO]^{2-}$ are different although in both the cases the central atom is in same oxidation state ?
- 7. State and prove Hellmann-Feynman theorem. Use this theorem to deduce the following expression of electrical polarizability (α_{m}).

$$\alpha_{zz} = 2\sum_{n \neq 0} \frac{(\mu_z)_{on}}{E_n^{(0)} - E_0^{(0)}}$$

where symbols have their usual meaning. 4

4 + 6

3

2

2

PG/IVS/CEM-402/15

(Continued)

(15)

8. Write the name (three letter code) and molecular structure of acidic, basic, polar but uncharged and non-polar amino acid residues (one from each group) found in the protein structure. What is the isoelectric point of a protein? Describe the acid-base titration curve of any acidic amino acid residue and show the different associated ionic forms of the residue. 4+2+4

PG/IVS/CEM-402/15

MV-200