M.Sc. 2nd Semester Examination 2014

CHEMISTRY

(Inorganic)

PAPER -CEM-203

Full Marks: 40

Time: 2 hours

Answer any five questions taking at least two from each Group

The figures in the right hand margin indicate marks

GROUP - A

1. (a) Consider the following structures and explain why the Cr—C bond length is longer in II compared to I?

 $(CO)_5 Cr \frac{2.04 \text{ Å}}{\text{CO}}$ OMe $(CO)_5 Cr \frac{2.13 \text{ Å}}{\text{N}}$ II

(Turn Over)

2

(b) How will you synthesize 'Tebbe's reagent'?
Write down the course of reaction
when Tebbe's reagent in treated with

R' in pyridine. Mention the final product. 1+2

(c) Write down the mechanism of the following reaction.

$$(CO)_5 Cr = \underbrace{\begin{array}{c} OR \\ R' - C \equiv C - R' \\ \Delta \\ RO \end{array} \begin{array}{c} R' \\ OH \end{array}}_{RO}$$

- (d) Write down the coordination modes of 'hydride' as ligand.
- 2. Complete the following reaction 1+1+2+1
 - (i) (a) $Cp_2 Ti(CO)_2 + PhC = CPh$ heptane
 Vacuum, $25^{\circ}C, 3h$

- (ii) Explain 'Agostic interaction'.
- (iii) Draw the probable binding modes of 'alkyne' as ligand.

PG/IIS/CHE-203/14

(Turn Over)

1

- 3. (a) Describe experimental determination of stability constant by mole ratio method.
 - (b) Stability of complexes increases in the following order: M (en) < M (trien) < M (EDTA). Explain.
 - (c) Discuss the factors affecting stability of complexes. 3+2+3
- 4. (a) Derive an expression for conditional stability constant of M-EDTA complex.
 - (b) Calculate [Ni²⁺] from a solution containing [NiY²⁻] = 0.015 M at pH 3.0 & pH 8.0 ($K_f = 4.2 \times 10^{18}$ at pH = 3.0 and 8; $\alpha = 2.5 \times 10^{-11}$ and 5.4×10^{-3})
 - (c) How can you derive the stability constant of ternary complexes by stepwise method? 3+3+2

GROUP - B

5. (a) Use group theoretical principle to determine the symmetry of vibrational mode of CH₂Cl₂ molecule applying cartesian

co-ordinate method. Identify the symmetry of IR and Raman active mode in this molecule. Given below the character table for $C_{2\nu}$ point group. 3+1

C2v	$E C_2 \sigma_{\nu}(xz) \sigma_{\nu}'(yz)$	z)
A_1	1 1 1 1	z x^2,y^2,z^2
A_2	1 1 -1 -1	2
B_1	1 -1 1 -1	$\left x, R_{y} \right xz$
<i>B</i> ₂	1 -1 -1 1	y, R_x yz

- (b) Explain why the polarization effect is not observed in cubic or higher symmetry molecule.
- (c) Determine the characters of irreducible representations of D_4 point group. Write the appropriate Mulliken symbols for these irreducible representations.

6. (a) p_x and p_y orbitals provide basis for B_1 and B_2 representation, respectively, of $C_{2\nu}$ point group. On the other hand p_x and p_y orbitals, as a pair, provide basis for the E representation of $C_{3\nu}$ point group. Explain. Given below the character table for $C_{3\nu}$ point group. (Use the character table of $C_{2\nu}$ point group given in **Q.No.5**).

C_{3v}	E	2C ₃	3σ,		
$\overline{A_1}$	1	1	1	Z	x^2+y^2, z^2
A_2	1.	1	-1	R_z	
E	2	-1	0	$(x,y) (R_x, R_y)$	$(x^2-y^2,xy)(xz,yz)$

(b) ClO_2 molecule is trapped in a solid. Its ground state is known to be B_1 . Polarized light parallel to the y-axis excites the molecule to an upper state. What is the symmetry of that state? (Use the character table of C_{2v} point group given in **Q.No.5**).

2

	(c)	The energy integral $\int \psi_i H \psi_j dY$ may be				
		non-zero only if ψ_i and ψ_j belong to the same irreducible representation of the molecular point group. Explain.	1			
7.	(a)	Using molecular orbital theory deduce the expression for symmetric and antisymmetric functions of H_2^+ ion. Show the electron distribution of symmetric and antisymmetric states of this ion. (Derivation of secular determinant is not required).				
	(b)	Lattice structure of ZnS is tetrahedral whereas lattice structure of CsCl is body centred cubic. Explain.	3			
8.	(a)	Deduce Born-Lande equation to estimate the lattice energy.	3			
	(b)	Write short notes on: $2\frac{1}{2} \times$:2			
		(i) Thin layer chromatography				
		(ii) Ion-exchange chromatography.				