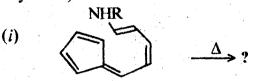
M.Sc. 1st Semester Examination, 2014 CHEMISTRY

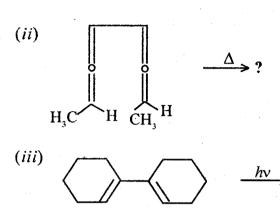
(Organic)

PAPER-CEM-102

Full Marks: 40

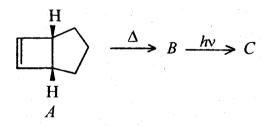

Time: 2 hours

Answer any five questions taking at least two from each Group


The figures in the right-hand margin indicate marks

GROUP - A

Write Woodward-Hoffmann selection rules for electrocyclic reactions, hence predict the product/s of the following reactions indicating Frontier-Orbital Interactions (F.O.I.) (Attempt any three):



(Turn Over)

$$(iv) \qquad \qquad \Delta \qquad \qquad \Delta$$

2. (a) Complete the following transformation;

Identify B and C and indicate the step/s where Woodward-Hoffmann selection rule is not obeyed. Explain with justification.

6

(b) Predict the product of the following reaction, indicating F.O.I. and hence identify (B) and (C):

$$\begin{array}{c}
H \\
N \\
COOCH_3
\end{array}
\xrightarrow{A} [B] \xrightarrow{O} [C]$$

3. (a) What is secondary interaction in cycloaddition addition reaction? Predict the product of the following reaction indicating the *primary* and *secondary interactions* of the Frontier orbitals;

(Turn Over)

2

(b) Predict the product/s of the following reaction indicating Frontier Orbital interactions (F.O.I.). Attempt any two: 2 × 2

(i)
$$\longrightarrow$$
 O + \longrightarrow ?

$$(ii) \longrightarrow + \longrightarrow_{\text{CN}} \xrightarrow{\text{CN}} \longrightarrow ?$$

(iii)
$$Ph-C$$
 CH_3 $NaOEt$? Ph

$$(iv)$$

$$NC \longrightarrow CN$$

$$CN \longrightarrow CN$$

(Continued)

4. Define (i, g) sigmatropic shift. Illustrate with suitable examples. Predict the product/s of the following reaction indicating F.O.I. in each case. (Attempt any *three*): $2+2\times3$

(ii)
$$CH_3$$
 CH_3 CH_3 A ?

(iii) CCH_3 CH_4 A ?

(iv) CCH_3 A ?

5. (a) What is Barton reaction?

2

(b) Carry out the following transformation:

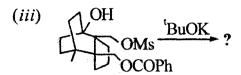
$$3 + 1 + 1 + 1$$

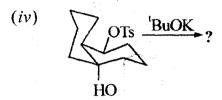
PG/IS/CEM-102/14

(Continued)

GROUP-B

- 6. (a) What is biogenetic isoprene rule?
 - (b) Explain the formation of (i) monocyclic,
 (ii) bicyclic and (iii) tricyclic products from squalene epoxide by utilizing the above rule.


(Turn Over)


7. Synthesize (20S) dammarene-diol,
1, butyrospermeol 2, baccharis oxide 3, lupeol
4, germanicol 5, α-amyrin 6, isobauerenol
7, from squalene epoxide (any four, with plausible mechanism):

8. (a) Predict the products in the following transformations (any two): 2×2

(i) OTs
$$\frac{\text{Solvolysis}}{BH_4}$$
?

(ii) OTs
$$\frac{(a) B_2 H_6}{(b) OH}$$
?

- (b) What is Grob fragmentation?
- (c) Synthesize one of the following: 2

9. Predict the products with plausible mechanism (any four): 2×4

(iii)
$$R^{1}$$
 R^{2} R^{3} OH $R-N=C:$

(iv) Br
$$CO_2CH_3$$
 $\frac{NaN_3, R_4P^+Br}{CHCl_4/H_2O}$?

10. Write the different steps of chemical reactions occurring during the biosynthesis of monoterpenoids starting for mevaloic acid route.

PG/IS/CEM-102/14

8