M.Sc. 4th Semester Examination, 2014

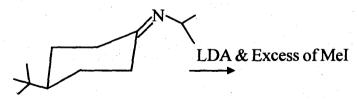
CHEMISTRY

PAPER - CEM - 401

Full Marks: 40

Time: 2 hours.

The figures in the right-hand margin indicate marks


(Organic)

Answer any five questions

- Draw the 3rd structures for the following conformers and show in them different steric interactions:
 - (i) 9, 10-dimethyl-cis-Decalin
 - (ii) 9, 10-dimethyl-trans-Decalin
 - (iii)Cis-1, 2 dihydroxy Cyclohexane.
 - (iv) Trans-transoid-trans-Perhydroanthracene.

2. Answer the following:

- 2×4
- (a) What is a symmetry forbidden reaction? Explain by taking the example of ethene under thermal as well as photochemical conditions.
- (b) How can you account for the opposite stereochemistry in the photochemical cyclization of a 1, 3-butadiene to a cyclobutene than the thermal reaction?
- (c) Why thermal [1, 3] sigmatropic migrations of hydrogen are unknown?
- (d) Predict the product(s) with appropriate reasoning:

3. For each of the following transformations, clearly explain the basis for the observed selectivity. For

full credit, show reagents, key conformations, transition states, and/or reactive intermediates to support your arguments. Be specific. 2×4

$$(b) \longrightarrow OH$$

$$\begin{array}{c}
(d) & OH \\
& MgBr + H \\
& OPG
\end{array}$$

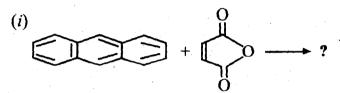
$$\begin{array}{c}
OH \\
& Me \\
\hline
OPG
\end{array}$$

- 4. Write in brief about the following terms: 2×4
 - (i) ORD
 - (ii) CD
 - (iii)Cotton Effect(CE)
 - (iv) Predict the CE as positive or negative of 9-Methyl-deca-3-ones.
- 5. (a) The following transformation gives the product as:

$$\begin{array}{c|c}
CN & CN \\
CN & D
\end{array}$$

$$\begin{array}{c|c}
CN & CN \\
\beta
\end{array}$$

$$\begin{array}{c|c}
CN & CN \\
\beta
\end{array}$$


Designate the expected position of the D in the product 'B'. Do you expect 'D' would be found at α or γ position or both. Explain with mechanisms.

(b) Predict the product of the following reaction with F.O.I. in each case (attempt any two): 2 × 2

(ii)
$$+ \frac{CN}{CN} \xrightarrow{CN} \xrightarrow{\Delta} ?$$
(iii) $\longrightarrow O + \bigcirc \longrightarrow ?$
(iii) $\longrightarrow Ph \longrightarrow ?$

6. (a) Define Regioselectivity and hence predict the product/s of the following reaction indicating reavon behind it

(b) Differentiate between 'periselectivity' and 'site selectivity' and hence the predict the product of the following reactions: 2+2+2

$$(ii) \qquad \begin{array}{c} \text{H} & \text{Me} \\ \text{H} & \text{Me} \end{array}$$

- 7. (a) What is chelotropic reaction? Explain the mechanism of the reaction with proper example.
 - (b) (i) Predict the product/s of the reaction with proper explanation indicating Frontier orbital interaction (F.O.I)

 (Attempt any three): 2 × 3

$$\begin{array}{c}
\text{CH}_{3} \\
\text{H} \\
\text{CH}_{3}
\end{array}
+ SO_{2} \xrightarrow{\Delta} ?$$

M.Sc. 4th Semester Examination, 2014

CHEMISTRY

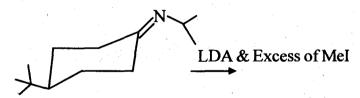
PAPER - CEM - 401

Full Marks: 40

Time: 2 hours.

The figures in the right-hand margin indicate marks

(Organic)


Answer any five questions

- 1. Draw the 3rd structures for the following conformers and show in them different steric interactions: 4 × 2
 - (i) 9, 10-dimethyl-cis-Decalin
 - (ii) 9, 10-dimethyl-trans-Decalin
 - (iii)Cis-1, 2 dihydroxy Cyclohexane.
 - (iv) Trans-transoid-trans-Perhydroanthracene.

2. Answer the following:

 2×4

- (a) What is a symmetry forbidden reaction? Explain by taking the example of ethene under thermal as well as photochemical conditions.
- (b) How can you account for the opposite stereochemistry in the photochemical cyclization of a 1, 3-butadiene to a cyclobutene than the thermal reaction?
- (c) Why thermal [1, 3] sigmatropic migrations of hydrogen are unknown?
- (d) Predict the product(s) with appropriate reasoning:

3. For each of the following transformations, clearly explain the basis for the observed selectivity. For

full credit, show reagents, key conformations, transition states, and/or reactive intermediates to support your arguments. Be specific. 2×4

$$(b) \longrightarrow OH$$

$$\begin{array}{c}
C) & O \\
\parallel & O \\
\text{Tol} & S \\
\end{array}$$

$$\begin{array}{c}
S \\
\text{Tol} \\
\end{array}$$

$$\begin{array}{c}
S \\
\text{N} \\
\text{H} \\
\text{OH}$$

$$\begin{array}{c}
(d) & OH \\
& MgBr + H \\
& OPG
\end{array}$$

$$\begin{array}{c}
OH \\
& Me \\
\hline
OPG
\end{array}$$

$$\begin{array}{c}
OH \\
& Me \\
\hline
OPG
\end{array}$$

- **4.** Write in brief about the following terms : 2×4
 - (i) ORD
 - (ii) CD
 - (iii)Cotton Effect(CE)
 - (iv) Predict the CE as positive or negative of 9-Methyl-deca-3-ones.
- 5. (a) The following transformation gives the product as:

$$\begin{array}{c|c}
CN & CN \\
CN & A\nu
\end{array}$$

$$\begin{array}{c|c}
CN & CN \\
\alpha \\
\beta
\end{array}$$

$$\begin{array}{c|c}
CN & CN \\
\beta
\end{array}$$

Designate the expected position of the D in the product 'B'. Do you expect 'D' would be found at α or γ position or both. Explain with mechanisms.

(b) Predict the product of the following reaction with F.O.I. in each case(attempt any two): 2 × 2

$$(i)$$

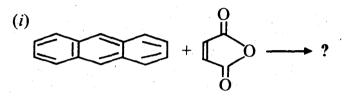
$$+ CN CN A?$$

$$(ii)$$

$$- O + A?$$

$$(iii)$$

$$+ Ph$$


$$- Ph$$

$$+ Ph$$

$$+ ?$$

6. (a) Define Regioselectivity and hence predict the product/s of the following reaction indicating reavon behind it

(b) Differentiate between 'periselectivity' and 'site selectivity' and hence the predict the product of the following reactions: 2+2+2

$$(ii) \qquad \begin{array}{c} \text{H} & \text{Me} \\ \text{H} & \text{Me} \end{array} \longrightarrow$$

- 7. (a) What is chelotropic reaction? Explain the mechanism of the reaction with proper example.
 - (b) (i) Predict the product/s of the reaction with proper explanation indicating Frontier orbital interaction (F.O.I)

 (Attempt any three): 2 × 3

$$\begin{array}{c}
\text{CH}_{3} \\
\text{H} \\
\text{CH}_{3}
\end{array}
+ SO_{2} \xrightarrow{\Delta} ?$$

	(b)	cubic structure with a density of 7.20 gcm ⁻³ at 20°C. Calculate the length of a unit cell and the distance between successive (111) planes.	3
6.	(a)	What is critical magnetic field for a superconductor?	2
	(b)	How does Hg become a superconductor below 4.2 K?	5
	(c)	Define Hall angle and Hall mobility.	3
7.	(a)	Define geometrical structure factor and find out it's value for NaCl crystal.	5
	(b)	Europium, which crystallizes as a body -centered cubic lattice, has a density of $5.243 \mathrm{gcm}^{-3}$ at $20^{\circ}\mathrm{C}$. Calculate the crystallographic radius of europium atom at $20^{\circ}\mathrm{C}$.	3
	(c)	What is the advantage of quantum theory over classical theory of free electron?	2

PG/IVS/CEM-401/14

(Turn Over)

- 8. (a) Write down the steps for the determination of vibrational modes of linear molecule using group theoretical principle.
 - (b) Use subgroup method to determine the symmetry species of vibrational modes of acetylene. Following in the character table of D_{2h} point group.

D _{2h}	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	σ(xy)	σ(xz)	σ (<i>yz</i>)		
A	1	1	1	l	1	. 1	1	1		x^2, y^2, z^2
\mathbf{B}_{tg}	1	1	-1	-1	1	. 1.	-1	-1	R _z	xy
\mathbf{B}_{2g}	1	-1		-1		-1	1	-1	R_{y}	XZ
\mathbf{B}_{3g}	1	-1	-1	1	1	-1	-1	1	R_{x}	yz
A_{1u}	1	1	1	1	-,1	-1	-1	-1		
$\mathbf{B}_{\mathbf{1u}}$	1	1	-1	-1	-1	-1	1	1	z	
B_{2u}	1	-1	1	-1	-1	. 1 .	-1	1	y	
B ₃ u	1	1	-1	1	-1	1	1	-1	х	

2

8

hydrolysis is given below. Rationalize the trends observed.

3

Complex	ΔV [≠] (cm³/mol)
[Co(NH ₃) ₅ (OHC(NMe ₂)] ³⁺	+ 43-2
[Co(NH ₂ Me) ₅ Cl] ²⁺	+ 32.7
[Co(NH ₂ Et) ₅ Cl] ²⁺	+ 31·1
trans – $[Co(en_2)Cl_2]^+$	+ 24.8
$Cis - [Co(en_2)Cl_2]^+$	+ 27.9

(Physical Special)

GROUP - A

Answer any two questions

- 1. (a) State the essential features of extended Hückel theory. 8
 - (b) Can molecular geometry be known from the theory? Discuss.

2.	Calculate the ground state energy of H-atom using variational principle.	10			
3.	Find out the CO polarity of the formaldehyde molecule in its doubly excited state (Π^{*2}) by Huckel theory.				
4.	(a) Discuss the basic difference of variational principle and perturbation theory.	2			
	(b) Show that $(2n + 1)$ th order perturbation energy can be calculated from n th order perturbation wave function only calculate the ground state energy of H-atom using variational principle.	8			
	Or				
	Calculate the ground state energy of He atom using first order perturbation method.	10			
	GROUP – B				
	Answer any two questions				
5.	(a) What is 'V ₂ ' centre? Discuss the mechanism of formation of 'V ₂ ' centre with a suitable example.	7			

PG/IVS/CEM-401/14

(Continued)