M.Sc. 3rd Semester Examination, 2014

CHEMISTRY

PAPER-CEM-302

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

(Organic Special)

Answer any five questions taking at least two from each Group

GROUP - A

- (a) Draw Jablowski diagram and show different excited states of polyatomic molecules initiated by photochemical irradiation. Show the major events occuring in different states.
 - (b) Define and differentiate between 'Intersystem Crossing' and 'energy transfer' phenomenon with suitable examples. 2+2

(Turn Over)

2. Predict the product/s of the following reactions showing mechanism in each case (attempt any four): 2 × 4

$$(i) \qquad \stackrel{\text{O}}{\longrightarrow} ?$$

$$(ii) \qquad \stackrel{\text{O}}{\longrightarrow} ?$$

(iii)
$$(A) \xrightarrow{\text{CH}_3} (A) \xrightarrow{\text{acetone}} (A) \xrightarrow{\text{CH}_3} (A) \xrightarrow{\text{CH$$

(iv)
$$CH_3$$
 $\frac{hv}{O \quad CH_3}$?

- 3. (a) What is Patterno-Buchi addition reaction? Explain the pathway of the reaction with a suitable example.
 - (b) Predict the product/s of the following reactions with mechanism (any two): 2×2

(iii) O
$$Ph - C \searrow Ph + C \searrow C_4 H_9 \xrightarrow{hv} (?)$$

4. Predict the products of the following reaction with proper justifications:

(i)
$$O \stackrel{H}{\longrightarrow} CH_3$$
 $CH_3 \stackrel{hv}{\longrightarrow} [?]$ 2

$$(ii) \qquad \stackrel{\text{O}}{\longrightarrow} [?] \qquad \qquad 3$$

Or

$$\begin{array}{c} CH \longrightarrow Ph \\ \parallel \\ CH \longrightarrow Ph \end{array}$$

cis / Trans

- 5. (a) What is Di-π-methane rearrangement reaction? Explain with a suitable example the pathway of the reaction and indicate its frontier-orbital interaction during conversion.
 - (b) Explain free-rotor effect and hence predict the product of the following reaction: 2+2

GROUP - B

- 6. (a) Define template effect.
 - (b) How does macrocyclization work even though it is an entropically disfavorable process?
 - (c) Howdoes 18-crown-6 bind a monovalent cation?
 - (d) Name the compound 1 and propose a synthetic route.

- 7. (a) Define hydrophobic effect.
 - (b) How can water act as a better solvent than common organic solvents for a simple Diels-Alder reaction? Illustrate with examples.

(Continued)

(c) What are 'salting in' and 'salting out' agents? 2+3+3

Or

Establish the structure of benzyl pencillia using spectroscopic evidences.

- 8. (a) What is aromatic-aromatic $(\pi-\pi)$ interaction?
 - (b) Show schematically the potential energy diagram for two interacting π -atoms as a function of their orientation.
 - (c) Charge transfer transitions observed for EDA complexes are a consequence not a cause of the more general π - π interaction.
 - (d) Give an example of Host-Guest complexation utilizing aromatic-aromatic interaction. 2 × 4
- 9. (a) Write the significance of multiple recognition sites in the selection of substrates during host-guest complexation.

- (b) Design a suitable **chiral** host for complexing **L-Trp** and show the mode of its complexation.
- (c) Design a receptor for the complexation of barbital 2.

$$H$$
 O
 O
 O
 O
 O
 O
 O
 O

(d) Design, and explain the mode of action of a protease enzyme mimic. 2×4

10. (a) What are cyclodextrins?

(b) p-chlorination of anisole is preferred in water in the presence of β-CD with rate acceleration. How do you explain this observation?

(c) Describe the use of a cyclodextrin derivative as a Ribonuclease enzyme mimic. 2+2+4

(Inorganic Special)

Answer any five questions taking at least two from each Group

GROUP - A

1. Complete the following reactions:

 1×8

$$\begin{array}{c|c}
 & \Theta & \Theta \\
 & Ph_3C & BFu \\
\hline
 & Fe \\
 & (CO)_3
\end{array}$$

2. (a) How will you synthesize ferrocene boronic acid starting from ferrocene?

PG/HIS/CEM-302/14

(Turn Over)

- 3. (a) Derive Lane diffraction conditions in case of diffraction from crystalline solids. Interpret these equations.
 - (b) Show that the reciprocal of FCC lattice is BCC lattice. 4+4
- 4. (a) Write down the differences between CD and ORD spectroscopy.
 - (b) Write down the differences between circular and linear polarised light?
 - (c) What do you mean by Cotton effect ? 4+2+2

GROUP - B

5. (a) Draw catalytic cycle for Wacker Oxidation.

- (b) Discuss the problems with Monsanto process.
- (c) What do you mean by Oxo-process? Which catalyst is used for this process? 4+2+2
- 6. (a) Discuss the catalytic cycle of alkene hydrogenation reaction by Wilkinson's catalyst.
 - (b) Write down the chemical formulation of Schrock-Osborn's catalyst and Crabtree's catalyst.
 - (c) Explain 'Orthometallation'. 4+2+2
- 7. (a) What are the driving forces for 'Oxidative Coupling' reaction?
 - (b) Explain β-hydrogen elimination reaction in the light of organometallic chemistry.
 - (c) Complete the following reaction:

$$\left[C_{p}Fe(CO)_{2}\right]^{\Theta} \xrightarrow{CH_{2}=CH-CH_{2}Cl} \xrightarrow{hv}$$

- 8. (a) Which type of characteristic bands are observed for Z-DNA and B-DNA conformation in CD-spectophotometry?
 - (b) What are the characteristic bands responsible for α -helical structure of a protein in CD-spectrophotometry? Assign the related transitions. (2+2)+4

(Physical Special)

Answer any **four** questions taking **two** from each Group

GROUP - A

1. (a) Derive the expression of entropy of activation for the reaction H⁺ and Br⁻ ions.

- (b) How does the rate of a reaction depend on the hydrostatic pressure?
- (c) The rate of a reaction at 25°C is doubled when the pressure is increased from 1 atm. to 2000 atm. Calculate $\Delta^{\neq}V$, assuming it to be independent of pressure. 5+3+2
- 2. Derive the expression of viscosity co-efficient (η) using absolute reaction rate theory. 10
- (a) "The rate of a full diffusion controlled reaction does not depend on the sizes of the reactants".
 Justify the statement.
 - (b) The reaction between K₂S₂O₈ and KI is carried out separately in presence of 0·1 (M) KNO₃ and 0·5 (M) KNO₃ at the same temperature and same solvent. What will be the fate of the reaction rate and why?
 - (c) State the working principle of molecular beam technique.

- (d) The combination reaction of methyl radicals in toluene is full diffusion controlled. If the viscosity of toluene at 20°C is 5.90 × 10⁻⁴ kgm⁻¹s⁻¹, find the rate constant of the reaction.
- 4. (a) What do you mean by surface excess? Show that surface excess becomes equal to moles adsorbed per unit area under certain condition. What is that condition?
 - (b) Starting from the thermodynamics of a polarizable interface, prove that 4+6

$$\left(\frac{d\gamma}{2RTd\ln a_{\pm}}\right)_{V_{-}} = -\Gamma_{+}$$

where the terms bear usual significance.

GROUP - B

5. (a) What are different possible mechanisms of hydrogen evolution reaction? Derive rate equation of any one of them.

- (b) How and why do the electron bands of extrinsic semiconductor change on dipping it in an electrolyte solution?
- (c) Distinguish between photovoltaic and photo-electro-synthetic cell using schematic diagrams. (2+2)+2+4
- 6. (a) Obtain the expression for molar translational entropy of a monoatomic gas.
 - (b) Calculate the characteristic rotational temperature for H_2 gas at 2727°C. Given the moment of inertia of hydrogen gas molecule at this temperature = 4.60×10^{-48} kgm² (given $h = 6.626 \times 10^{-34}$ Js $K = 1.38 \times 10^{-23}$ JK⁻¹)
- 7. State the principle of equal a priori probability and derive the Gibbs canonical distribution. 2+8

8. What is meant by Bose-Einstein condensation?

Derive the expression for the temperature at which such a process may occur for a boson. 2 ± 8