M.Sc. 3rd Semester Examination, 2014

CHEMISTRY

PAPER-CEM-301

The figures in the right-hand margin indicate marks

(Organic Special)

[Marks: 40]

Time: 2 hours

Answer any five questions

- 1. (a) How many chiral centers are there in 9, 10-dimethyl decalins? Write 3d structures of those conformers and show in them the gauche-butane interactions.
 - (b) Draw the 3d structures for the following conformers and show in them different steric interactions and comment on their chiralities:

(Turn Over)

- (i) cis-transoid-cis perhydroanthracene
- (ii) trans-cisoid-cis perhydrophenanthrene.
- 2. (a) The observed rotation of a 0·3 g of cholesterol in 15 ml of CHCl₃ contained in 10 cm long polarimeter tube is −0·78°. Calculate specific rotation of cholesterol. When (+)-cholesterol was mixed to the above (−)-cholesterol, the mixture had a specific rotation of 13°. What is the fraction of the (+)-cholesterol?
 - (b) The following is the energy profile drawing of 1, 1-dibromo-2-methylpropane, draw the appropriate Newman conformations of A, B and C.

Torsion angle

- 3. Write in brief about the following terms (any four): 2×4
 - (i) ORD
 - (ii) CD
 - (iii)Cotton Effect (CE)
 - (iv) Predict the CE as positive or negative of 9-Methyl-deca-3-ones
 - (v) Cieplak Model.
- 4. Write all the possible streoisomers of perhydrophenanthrenes and correlate them with perhydrodiphenic acids by epimerization protocols.
- 5. Draw the 3d structures for the following conformers and show in them different steric interactions: 2 × 4
 - (i) cis-Decalin
 - (ii) trans-Decalin
 - (iii) cis-1, 2 dihydroxy Cyclohexane
 - (iv) trans-transoid-trans-Perhydroanthracene.

6. Answer the following:

 2×4

- (a) What is a symmetry forbidden reaction? Explain by taking the example of ethene under thermal as well as photochemical conditions.
- (b) How can you account for the opposite stereochemistry in the photochemical cyclization of a 1, 3-butadiene to a cyclobutene than the thermal reaction?
- (c) Why thermal [1, 3] sigmatropic migrations of hydrogen are unknown?
- (d) Predict the product(s) with appropriate reasoning:

7. For each of the following transformations, clearly explain the basis for the observed selectivity. For full credit, show reagents, key

conformations, transition states, and/or reactive intermediates to support your agruments. Be specific: 2 × 4

$$\begin{array}{c}
(b) & O \\
\hline
 & O \\
 & O \\
\hline
 & O \\
\hline
 & O \\
 & O \\
\hline
 & O \\
\hline
 & O \\
 & O \\
\hline
 & O \\
 & O \\
\hline
 & O \\
\hline
 & O \\
 & O \\
\hline
 & O \\
 & O \\
 & O \\
\hline
 & O \\
 & O \\
\hline
 & O \\
 & O$$

8. (a) Predict the product(s) with plausible mechanism:

$$\begin{array}{c} OsO_4/H_2O \\ H \\ l_2 + AgOAc \\ / H_2O \\ ? \end{array}$$

- (b) Write all the possible conformational structures for 2, 2, 3, 3 tetramethyl *n*-butane and draw the energy profile diagram showing the rotation between $C_2 C_3$ bond in Newman Projection structures.
- 9. Write in brief with one example in each case: 8
 - (a) Allylic 1, 2-strain
 - (b) 2-alkylketone effect
 - (c) 3-alkylketone effect
 - (d) Allylic 1, 3 strain.

(Inorganic Special)

[Marks: 40]

Time: 2 hours

Answer any five questions, taking at least two from each Group

GROUP - A

1. Applying group theory justify that electrocyclic reaction of *cis*-butadiene must occur via conrotatory mechanism under thermal condition but disrotatory mechanism under photochemical condition. (Given below the character table and correlation table).

$C_{2\nu}$	E	C_2	$\sigma_v(xz)$	$\sigma_v(yz)$		
	i					i
A_2	1	1	-1	-1	R_z	хy
B_1	1	-1	1	-1	x, R_y	xz
B_2	1	-1	-1	1	y, R_x	x^{2}, y^{2}, z^{2} xy xz yz

C_{2v}	C_2	$\sigma(xz)$ C_s	$\sigma(yz)$ C_s	
A_1	A	A'	A'	_
A_2	A	A''	A"	
B_1	В	A'	A''	
B_2	В	A"	A'	

2. Find out the effect of polarization of incident radiation in the electronic transition of $[Cr(C_2O_4)_3]^{3-}$. (Given below the character table and correlation table).

$$\begin{array}{c|c}
O_h & D_3 \\
\hline
A_{2g} & A_2 \text{ (ground state)} \\
T_{1g} & A_2 + E \\
T_{2g} & A_1 + E
\end{array}$$

- 3. With the help of group theory determine the symmetries of the group of orbitals of hydrogen atoms which are effective for σ -bond formation in H_2O molecule. Construct a qualitative σ -bonding molecular orbital energy level diagram for H_2O molecule. Show that for water only one $n \to \sigma^*$ electronic transition is possible. Find out the polarization of incident radiation for this transition. (Use the character table of $C_{2\nu}$ point group given in Question No. 1). 2+2+2+2
- 4. (a) Use group theoretical principle to determine the symmetry of vibrational mode of mer- $[ML_3X_3]$ molecule using cartesian coordination method. Identify the symmetry of IR and Raman active mode in this molecule.

 (Use the character table of $C_{2\nu}$ point group given in Question No. 1).
 - (b) Why do the configurations d^n and d^{10-n} give identical ligand field terms in any given field symmetry?

(c) Show that the d-orbital whose angular wave function is constant times $(\sin^2\theta \cos 2\phi)$ is $d_{x^2-y^2}$ orbital.

GROUP - B

5. (a) Draw ¹HNMR spectra for the square planar metal complexes given below. (M, L and L' are non magnetic.)

- (b) What is the solvent effect on chemical shift in NMR-spectroscopy for main group hydrides?
- (c) How many types ¹H NMR signal are found for $[(\eta^5-C_5H_5)Fe(CO)_2]_2$? What is the temperature effect on ¹H NMR spectra of trimethylaluminium dimer? 1+2

(Continued)

2

3

6.	(a)	Draw ¹⁹ F NMR spectrum for IF ₅ and ³¹ P NMR spectrum for [H ₂ P ₂ O ₅] ²⁻ ion, indicating stick diagram for each.				
	(b)	Two peaks at 1.8 and 2.8 ppm in proton NMR spectra are recorded in 400 MHz spectrometer. What is the peak to peak separation in Hz? Draw ³¹ P NMR spectrum for [Rh(PR ₃) ₅] ⁺ indicating stick diagram. 1 +	2			
	(c)	Discuss the ¹ H NMR spectra of NaBH ₄ .	3			
7.	(a)	Explain the ¹ H NMR spectra of terminal and bridging protons in ¹¹ B ₂ H ₆ .	3			
	(b)	¹¹ B NMR spectra of B ₁₀ H ₁₄ consist of four different peak. Assign the peaks.	2			
	(c)	Predict the ¹¹ B NMR spectra of B ₅ H ₉ .	3			
8.	(a)	Write down the number of signals obtained from ¹⁹ F NMR of BF ₄ in D ₂ O with proper explanation.	3			
	(b)	Show the ¹ H NMR spectra of mer-IrCl ₃ (PMe ₂ Ph) ₃ .	3			

(Turn Over.)

PG/IIIS/CH-301/14

(c) Show the ¹H NMR spectra of Na₂[HV(CO)₅]. 2

(Physical Special)

[Marks: 40]

Time: 2 hours

Answer any four questions, taking at least two from each Group

GROUP - A

- 1. (a) Define Absolute error, Relative error and Percentage error. Round-off the numbers correct to 4-significant figures: 0.34026, 2.5555.
 - (b) Evaluate

$$\int_{0}^{1} (4x-3x^2)dx,$$

taking 10 intervals, by Trapezoidal rule.

2. (a) What is meant by matrix representation of operators? Show with examples.

(Continued)

	(b) Derive the matrix representation of Schrödinger equation.	;
3.	Derive the matrix representation of \hat{S}_x and \hat{S}_y operators. $5+5$	5
4.	Describe Hartree SCF method and show the expression of the total energy in terms of Hartree orbital energy.)
	GROUP – B	
5.	Derive Hartree-FUCK equations and convert it to the Pseudoeigenvalue form. 7 +	-
6.	(a) Find the normalisation constant for a 2N electronic system considering a Slater determinantal representation.	5
	(b) Write notes on K_{ii} .	5
7.	Write a short note on projection operator. Use projection operator to obtain the SALC of hydrogen 1S orbital of NH ₃ which can be used as	

(Turn Over)

PG/IIIS/CH-301/14

approximate solution to bond with nitrogen atomic orbital.

Following is the character table of C_{3v} point group.

			3σ _ν		
A_1	1	1	1	z	$x^2 + y^2, z^2$ $(x^2 - y^2, xy)(xz, yz)$
A_2	1	1	- 1	R_z	
E	2	-1	0	$(x, y)(R_x, R_y)$	$(x^2-y^2,xy)(xz,yz)$

- 8. (a) Show that each non-degenerate MO of a molecule belonging to a particular point group serves as a basis for one dimensional IR of the point group.
 - (b) How does group theory help in determining zero and non-zero value of Integrals?