M.Sc. 2nd Semester Examination, 2011

CHEMISTRY

(Physical)

PAPER-CEM-201

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP-A

Answer any one of the following

1. In a potential step problem with E < V. Show with derivation that both probability and probability current are conserved. 5+5

2. Derive an expression for $\Delta p.\Delta q$ by operator technique for linear harmonic oscillator. 10

Or

Set up Schrödinger equation for a simple harmonic oscillator and solve it by the ladder operator method for the energy eigenvalue.

GROUP-B

Answer any one of the following

- 3. (a) What do you mean by enzyme inhibition?

 Show how the rate constant of an enzyme catalysis reaction changes in presence of an inhibitor.
 - (b) Antibiotic-resistant bacteria have an enzyme, penicillinase, that catalyzes the decomposition of the antibiotic. The molecular mass of penicillinase is 30,000 g.mol⁻¹. The turnover number of the enzyme at 28 °C is 2000 s⁻¹. If 6·4 μg of penicillinase catalyzes the destruction of 3·11 mg of amoxicillin, an antibiotic with a

5

molecular mass of 364 g.mol⁻¹, in 20 seconds at 28 °C, how many active sites does the enzyme have?

- (c) Give one example of heterogeneous catalysis reaction.
- 4. (a) What is the essential condition to occur a redox reaction by inner sphere mechanism? 3
 - (b) What is Autocatalyse? Find out the rate constant of the autocatalytic reaction 2+5

 $A \rightarrow P$

GROUP-C

Answer any one of the following

- 5. (a) What do you mean by asymmetry and electrophoretic effects? Compute electrophoretic component of velocity of a moving ion.
 2+2+2
 - (b) Write short note on dispersion of conductance.

4

- 6. (a) When does the concentration overpotential arise? Derive an equation relating concentration overpotential and limiting current density. 2+5
 - (b) How do you obtain equilibrium exchange current density using high field approximation of Butler Volmer equation?

Or

- (a) What is Polarographic wave? What do you mean by half-wave potential? 2+2
- (b) How can the co-ordination number of a complex ion and the stability constant of a complex be determined by use of half wave potential?

GROUP-D

Answer any one of the following

7. (a) Use free electron model to obtain the frequency of transition (HOMO \rightarrow LUMO) for a π -conjugated system having 'N' number of π -electrons.

6

3

- (b) Depict the bonding (σ, π) and antibonding (σ, π^*) orbitals when (i) two p-orbital, (ii) two d-orbital are combined to form bond. 3
- (c) State Franck-Condon principle. Explain the relative intensity of vibronic transitions when (i) $r'_e < r'_e$, (ii) $r'_e = r'_e$. r'_e and r'_e are the minimum of potential curve of ground and excited state respectively.
- 8. (a) Show that the potential energy (V) of interaction between an n-pole and an m-pole can be written as,

$$V \propto \frac{1}{r^{n+m-1}}$$

where 'r' is the distance (centre to centre) between the two poles.

(b) Write a short note on London dispersion interaction.