M.Sc. 2nd Semester Examination, 2010 CHEMISTRY

(Organic)

PAPER-CH-1202

Full Marks: 40

Time: 2 hours

Answer any five questions taking at least two from each Group where Q. Nos. 6 or 7 are compulsory

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

GROUP-A

1. (a) Distinguish between site selectivity and periselectivity with specific example and explain. 2+2

(b) Predict the product/s of the following reactions with reason (attempt any two): 2×2

- 2. (a) What is Chelatropic reaction? Explain with an example.
 - (b) The following reaction gives different products ratios as shown below in different conditions.

2

Indicate the reason behind this:

(i) At 0°C without catalyst: 88% 12%

0°C/AlCl, : 96% (ii) 4%

(iii) -80°C/AlCl, : 98% 2%

(c) What is secondary interaction? Explain what could be the effect of rate of the following reaction with Lewis acid and without Lewis acid?

3. Predict the product/s of the following reactions indicating frontier orbital interaction (F.O.I) in each case (attempt any four):

4. An acyclic monoterpenoid, molecular formula $C_{10}H_{18}O(\underline{A})$ on treating Ni/H₂ gives $C_{10}H_{22}O(\underline{B})$ and on acetylation yields monoacetyl derivative. On Vigorous KMnO₄ oxidation compound (A) yields Laevulic Acid O, acetone

and oxalic acid. Further compound (A) on treating with dil. H_2SO_4 yields geraniol through isomerisation reaction. Identify compound (A) and confirm its structure through synthesis. 6+2

5. Predict the products (any *four*, with Plausible mechanism):

(Turn Over)

8

GROUP - B

6. (a) Answer any two:

 $1\frac{1}{2} \times 2$

- (i) Give an example of a molecule having diastereotopic faces and designate them. Explain by symmetry and addition criteria.
- (ii) Write an achiral molecule having enantiotopic ligands and designate the ligands. Explain by symmetry and substitution criteria.
- (iii) A center of a molecule may be prochiral but prostereogenic. Explain with an example.
- (b) Write down the product of the following reaction:

R* is a chiral ligand

Comment on the 'H NMR signals of H_a and H_B for both the starting material and the product/s explaining in terms of their topicity as revealed by their symmetry criteria.

(c) Explain the mechanism of the following reaction:

$$(\underline{S})$$
-MeCO.CO.O. CHBrMe $\frac{(i) \text{PhMgBr}}{(ii) \text{H}_{2}\text{O}^{+}}$

Assign the π -face undergoing predominant attack and the pref/parf nomenclature to the predominant product.

(a) Comment on the optical activity galactitol ($\underline{\underline{A}}$). Explain the topicity of the CH₂OH groups by application of their symmetry and selective oxidation criteria.

> СН,ОН HO HO. CH,OH Galactitol (\underline{A})

> > (Continued)

(b) Indicate the plausible mechanism of the following reactions and name the predominant product, if any. Attempt any two: $2\frac{1}{2} \times 2$

(i)
$$(\underline{R})$$
-MeCOCH BrMe (i) PhMgBr (ii) H₃O⁺ $>$

Apply Felkin model with justifications

Me CH=CH.CHOH
$$\longrightarrow$$
 $\xrightarrow{\underline{t}\text{-BuOOH (2eq.)}}$ $\xrightarrow{Ti (iPrO)_4 (0.5 eq)}$ $(\underline{R}), (\underline{R})\text{-(+)-Diethyl tartarate}$

(Sharpless epoxidation)

(iii) MeCHPh.CH(OTs)-Me Gl.AcOH

Active threo and active erythro isomers.

Comment on the optical activity of the product(s) in each case.

8. (a) Carry out the following transformations (any two):

$$(i) \qquad OCH_3 \qquad O \qquad 2 \times 2$$

$$R \qquad R$$

(b) Synthesize Longifolene (I) from Wieland Mischer 4

9. Describe in detail the reactions involved in the determination of structure and stereochemistry of nicotine.

ያ