M.Sc. 1st Semester Examination, 2010 CHEMISTRY

(Inorganic)

PAPER-CEM-103

Full Marks: 40

Time: 2 hours

Answer any four questions

The figures in the right-hand margin indicate marks

- 1. (a) What do you mean by "Nucleotides"? Write down the general structural framework of a nucleotide. 1+2
 - (b) Define the term "residue"? What do you understand by "his-10"? 1+1
 - (c) What is the quaternary structure of a protein?
 - (d) Discuss 4 Fe-ferredoxin with respect to structure, electron transfer and magnetism.

- 2. (a) Prove that if X is conjugate with Y and Z, then Y and Z are conjugate with each other.
 - **A**

3

2.

- (b) Verify that the scalar product of vectors \overrightarrow{A} and \overrightarrow{B} in two-dimensional space is equal to the sum of the products of the lengths of projections of the vectors in two orthogonal axes with no cross terms.
- (c) Using transformation matrices show that S₂ operation is identical to the inversion operation.
- (d) Identify the point group for each of the following molecules/ions: $\frac{1}{2} \times 6$
 - (i) Ethane (staggered)
 - $(ii) \left[Os_2 Cl_8 \right]^{2}$
 - (iii) fac-[Co(NH₃)₃Cl₃] (ignore H atoms)
 - (iv) Cyclohexane (boat form)
 - (v) CH₂BrCl
 - (vi) SO_3^{2-} .

3.	(a)	Discuss the role of distal and proximal histidine residues in haemoglobin and myoglobin.	4
	(b)	Explain "Tigger mechanism".	2
	(c)	Draw models of haemoglobin and myoglobin involving steric hindrance and hydrophobic interaction.	2
	(d)	Write down the role of Sodium and Zinc metal ion in biological systems.	2
4.	(a)	Derive the matrix form of Sn(y) operation.	3
	(b)	Using "Great Orthogonality Theorem" prove that the sum of the squares of the characters in any irreducible representation equals to the order of the group.	3
	(c)	Construct the "group multiplication table" for NH ₃ molecule. Determine the classes present in this molecule.	
		iii uiis iiioiecuie.	- 4

(a) Though f-f and d-d transitions are Laporte 5. forbidden, the colour of the Ln3+ aqua ions are less intense than the d-block metal ions. Explain.

2

3

(b) Explain the colour of the following anions:

MnO : purple-red

MnO₄²⁻ : green

CrO₂² : yellow

Considering bonding explain the diamagnetic nature of [Re,Cl₈]²⁻ ion.

(d) What d-orbital splitting pattern would you expect for a planar and triangular ML, complex?

4

(a) Write notes on:

3 + 2

- (i) Molybdenum blue
- (ii) Creutz Taube Cation.

(b)	Square plannar d ⁸ paramagnetic complexes are extremely rare. Account for this observation with a crystal field argument.
(c)	Explain why the value of Racah parameter for a complex is less than that for a free ion.
(a)	What happens when B ₁₀ H ₁₄ is allowed to react with Et ₃ N in boiling xylene?
(b)	State and illustrate the Capping principle with a suitable example.
(c)	On the basis of the Wade's rule, predict the core structure of the following species:
	$[CpFe(C_2B_9H_{11})]$
	$[(Ph_3P)_2(H)IrB_9H_{13}]$
(d)	A borane molecule has its Styx No 3203, predict the formula of the molecule and draw

the possible structure.