CHEMISTRY

PAPER - CH-2101

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

(Inorganic)

Answer any four questions

1. In $[Co(NH_3)_6]^{3+}$, the ground state belongs ${}^1A_{1g}$ representation and two excited states belong to ${}^1T_{1g}$ and ${}^1T_{2g}$ representation. Show that the

electronic transition from the ground state to these excited states will be vibronically allowed.

(Given below the character table for O_h point group).

0,	E	8C ₃	6 <i>C</i> ,	6 <i>C</i> ₄	$3C_{1}(=C_{1}^{2})$	i	6.S. ₄	8.S ₆	.3σ _k	6 σ _d		•
A,,	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_{1_g}	1	1	-1	-1	1	1	- i	1	1	-1		
E_{z}	2	-1	0	0	2	2	0	-1	2	0		1:-
T_{i_R}	3	0	-1	ı	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	$(2z^2-x^2-y^2, x^2-y^2)$
Tzz	3	0	i	-1	-1	3	-1	0	-1	1	(A _x , A _y , A _z)	(22 - x - y , x - y)
$A_{i_{i_{i}}}$	1	1	1	1	1	-1	-1	-1	-1	-1		(xz, yz, xy)
A 2"	1	1	-1	-1	1	-1	1	-1	-1	1		
E_{u}	2	-1	0	0	2	-2	0	1	-2	0	- 1	
$T_{_{1\mu}}$	3	0	-1	i	-1 %	-3	-1	0	1	1	(x, y, z)	
T,,,	3	0	1	- i	-1	-3	ı	0	1	-1		•

With the help of group theory determine the symmetries of the atomic orbitals of F atoms which are effective for σ-bond formation in SF₆ molecule. Construct a qualitative σ-bonding molecular orbital energy level diagram for SF₆ molecule. (Use the character table of O_h point group given in Question No. 1).

3. Use group theoretical principle to determine the symmetry of vibrational mode of ML₅ (square pyramidal) molecule using Cartesian coordinate method and internal coordinate method. Comment about the results. Identify the symmetry of IR and Raman active mode in this molecule.

C_{4v}	E	2C ₄	C_2	2σ,	$2\sigma_d$		
$A_{_1}$	1	1	1	1	I	7	$x^2 + y^2, z^2$
A_2	-1	1	1	-1	_1	R_z	
B ₁	1	-1	1	1	-1		$x^2 - y^2$
B_2	[1	`: -1	1	-1	l		xv
E	2	0	-2	0	0	$(x,y)(R_x,R_y)$	(xz, yz)

4. (a) Establish the relation

$$\chi(\alpha) = \frac{\sin{(1+\frac{1}{2})\alpha}}{\sin{\alpha/2}}.$$

6

(b) What do you mean by "exclusion rule"?

(c) With the help of group theory find out the hybridization of B atom in BF₃ molecule.

D_{3h}	E	$2C_3$	$3C_2$	σ_{h}	$2S_3$	3σ,		
A_1^{\prime}	1					1		$x^2 + y^2$, z^2
$A_2^{'}$	1	1	-1	1	1	-1	R_{z}	
$E^{'}$	2	-1	0	2	-1	0	(x,y)	(x^2-y^2,xy)
$A_1^{''}$	1	1	1	-1	a -1	-1		
$A_{_{2}}^{''}$	1	1	-1	-1	-1	1	Z	
E''	2	-1	0	-2	. 1	0 .	(R_x, R_y)	(xz, yz)

- 5. (a) Predict ¹⁹F nmr spectrum in 9F₅ molecule.
 - (b) Discuss briefly the ^{31}P NMR of $HP_2O_5^{3-}$ molecule.
 - (c) Discuss the physical basis of photoelectron spectroscopy.
- 6. (a) What is the principle of NQR spectroscopy? 2
 - (b) What do you mean by Fourier transform technique?

- (c) A particular Mössbauer nucleus has spins 3/2 and 1/2 in its excited and ground states, respectively. How will the y-ray spectrum split up under the following conditions:
 - (i) the nucleus is under the influence of an internal electric field gradient, but no magnetic field is applied.
 - (ii) there is no magnetic field gradient at the nucleus but an external magnetic field is applied.
 - (iii) both an internal electric field gradient and an external magnetic field are present?

2 + 2 + 2

7. (a) What is Koopman's theorem?

3

(b) The compound PFCl₄ can exist in two different isomer, NQR spectroscopy predicts one of them in solid state—discuss.

(c) ³¹P resonance in P₄S₃ consists of two peaks with intensity ratios of 3:1. The more intense peak is a doublet and the less intense is a quadruplet.
 Predict the structure of P₄S₃ from above information.

(Organic)

Answer any five questions taking at least two from each Group

GROUP-A

 (a) What is Jablonski diagram? Show various transitions occurring between ground and excited states initiated through photochemical irradiation. (Show the diagram only) (b) Predict the product(s) of the following reactions

PG/IIIS/CH2101/09

(Turn Over)

- 2. (a) What is $di-\pi$ -methane rearrangement reaction? Explain the orbital interactions showing symmetry allowed path for the reaction with suitable example(s).
 - (b) What happens when the following compounds are photolysed? (attempt any one):

(c) Explain the mechanistic path of each of the steps of the following reaction;

Rationalise that the reaction does not follow $di-\pi$ -methane rearrangement reaction.

3. (a) What is Paterno-Buchi addition reaction?

Explain the mechanism with suitable example(s) and predict the product of the following reaction;

2+2

(b) Predict the product(s) of the following reactions with mechanism (attempt any two): 2×2

4. (a) What are supra and antarafacial processes in sigmatropic reactions? What is [i, j] sigmatropic shifts and hence predict the product of the following reaction with plausible mechanism: (attempt any one) 2+2

(b) Carry out the following transformation indicating F.O.I (any two): 2×2

PG/IIIS/CH2101/09

(Turn Over)

- 5. (a) Draw the Newman projection formulae of cis-decalin (any conformer) and trans-decalin to demonstrate the torsion angle signs at both sides of the ring junction of each.
 - (b) Justify the names of the conformers of cis-decalin. Illustrate the rule by which one can find out the torsion angle sign at the inner side of any chair conformation.

- (c) cis-Decalin lacks reflection symmetry, still it is optically inactive, whereas 1 or 2 substituted cis decalin is optically active. Explain.
- 6. (a) Deduce the Eliel equation displaying the relationship between equilibrium constant and the different specific rate constants of a mobile system. How can you derive Winstein-Holness equation from the Eliel equation?
 - (b) The specific reaction rates of the acetylation (with Ac_2O/Py at 25°C) of cis-4-t-butylcyclohexanol, trans-4-t-butylcyclohexanol and cis-4-methylcyclohexanol are $2\cdot89$, $10\cdot65$ and $3\cdot76$ units (the unit is $10^{-5}1$ mol⁻¹ sec⁻¹). Find out the conformational equilibrium constant of 4-methylcyclohexanol, and hence calculate ΔG (conformational free energy) for its two conformers.

- (a) Comment on the relative stability and optical activity of the two conformers each of the E and Z diastereomers of 2-methylcyclohexylidene acetic acid.
 - (b) Which diastereomer of 2-methyl-4-t -butylcyclohexanone is more stable and why? How can you effect the complete (100%) conversion of the more stable diastereomer into the less stable one, explain the steps.
 - (c) Comment on the relative rates of CrO_3 oxidations of cholesten- 3β ol and cholesten- 6β ol. $2\frac{1}{2}$
- 8. (a) Complete the following reaction sequence and rationalize mechanistically. Show the involvement of the π-orbitals in the second step.
 Name A and C and designate the absolute configuration of C.

$$(R)$$
 - (-) - MeCHOH. C ≡ CH $\xrightarrow{\text{Me}_2\text{CHCHO}}$ $\xrightarrow{\text{H}^{\oplus}}$ $\xrightarrow{\text{SiO}_2}$ $\xrightarrow{\text{A}}$ (-) - $\stackrel{\square}{\subseteq}$

(b) cis-2-Decalone upon bromination with bromine in acetic acid forms predominantly the axial 1-bromo derivative. Explain this fact in terms of mechanism, and stereoelectronic and steric factors involved.

(Physical Spl.)

Answer any four questions taking two from each Group

1. (a) Given

X	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

find f(1.5).

(b) Evaluate

equation.

$$\int_{0}^{1} (4x - 3x^{2}) dx,$$

taking 10 intervals, by Trapezoidal rule.

- 2. (a) Find the matrix representation of $\hat{S}y$.
 - (b) Write a note on projection operator.
- 3. (a) Derive the matrix representation of Schrödinger
 - (b) Describe independent particle model and calculate the ground state energy of Li atom using this model.
- 4. (a) Derive Hartree-Fock SCF theory.
 - (b) Convert the Hartree-Fock equations to pseudo eigenvalue form.

5

5

5. Obtain the expression for the total energy of a 2N-electronic atom in a closed shell configuration using a slater determinantal wave function. State the meaning of the integrals involved in the expression. 10

GROUP-B

- 6. (a) Discuss unitary transformations with examples. 6
 - (b) Show that Koopman's theorem is valid at the Hartree-Fock SCF level.
- 7. (a) Show that

$$<\hat{H}> = \sum_{\mathcal{P}} (-1)^p < S_1(1) \dots S_{2N}(2N) \mid \hat{H} \mid$$

$$\mathcal{P}S_1(1) \dots S_{2N}(2N) >$$

for a closed shell configuration.

(b)	Show that Hartree-Fock operator	is in	variant
	under unitary transformation.		

- 8. (a) What do you mean by linear space and basis vector? Illustrate with an example.
 - (b) How do you obtain the representation of a vector from a given basis to another basis within a vector space?
 - (c) Show that, the eigenvector matrix that diagonalises a hermitian matrix is unitary in nature.
- 9. (a) Find the rotational matrix in the basis set of (e_1, e_2, e_3) where e_1 and e_2 are unit vectors and are inclined at an angle ' α ' to one another and e_3 , the unit vector perpendicular to both e_1 and e_2 is the axis of rotation.

(b) The linear relation between the complex p-wavefunctions and the real p-orbitals are

$$p_{+1} = \frac{1}{\sqrt{2}} p_x + \frac{i}{\sqrt{2}} p_y$$

$$p_{-1} = \frac{1}{\sqrt{2}} p_x - \frac{i}{\sqrt{2}} p_y$$

$$p_0 = p_z$$

If the representation matrices for C_3 and C'_2 of the point group D_3 in the basis set (p_x, p_y, p_z) [Written as a row matrix] be

$$D(C_3) = \left(\begin{array}{ccc} -\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{array}\right)$$

$$D(C'_2) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

What will be the corresponding matrices in the bais set (p_{+1}, p_{-1}, p_0) ?

10. (a) Show that for direct product representation of two square matrices

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \text{ and } B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

the character $\chi(A+B) = \chi(A)\chi(B)$.

(b) Prove that in the $C_{3\nu}$ point group,

$$E \times E = A_1 + A_2 + E.$$

(21)

(c) Diagonalize the σ_3 matrix:

$$\sigma_3 = \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix} \text{ by}$$

$$X = \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ -1/2 & \sqrt{3}/2 \end{pmatrix}$$

[Given character table for C_{3v} point group:

C_{3v}	E	2 <i>C</i> ₃	$3\sigma_v$	
A_1 A_2	1	1	1	
A_2	1	1	-1	
E	2	-1	0	
-				