M.Sc. 1st Semester Examination, 2012

CHEMISTRY

(Inorganic)

PAPER - CEM- 103

Full Marks: 40

Time: 2 hours

Answer any five questions taking at least two from each Group

The figures in the right hand margin indicate marks

GROUP - A

- 1. (a) 'The distal protein drastically reduces the co-affinity of hemoglobin and myoglobin' Justify the statement.
 - (b) What do you mean by 'picket-fence' model for hemoglobin or myoglobin?
 - (c) Discuss the structural features in oxygenated hemocyanin.

2

1

2

(d)	How Vasca's complex can act as 'Synthetic O ₂ -carrier'? Write down the structural representation.	2
(e)	Write down the structure of 4Fe - 4S protein.	1
(a)	What happens when H_2O_2 is added to an acidified solution of $[Cr_2O_4]^{2-}$? How the final product can be isolated? Write down the structure.	2
(b)	Write down the structure of NbCl ₄ and NbF ₅ .	2
(c)	Complete the following reactions	2
	(i) $[RuO_4]^- + [OH^-] \longrightarrow$	
	(ii) $[O_sO_4]$ $\xrightarrow{\text{aqs. KOH}}$	
(d)	Discuss how trans- $[O_sO_2(OH)_4]^{2-}$ is diamagnetic.	
(a)	In CuCl ₂ , four Cu – Cl bond distances are of 2·30Å and two bond distances are of 2·95 Å. Whereas in K ₂ CuF ₄ , four Cu–F bond distances	

are of 2.08 Å and two bond distances are of

1.95 Å. Explain.

3.

(b)	Which of the compound among FeAl ₂ O ₄ , COAl ₂ O ₄ and NiAl ₂ O ₄ is most likely inverse spinel structure.	3
(c)	$\left[\text{CuCl}_4\right]^{2^-}$ is tetrahedral but other four coordinated Cu(11) complexes are square planer. Explain.	2
(a)	Identify Closo/Nido/Arachno/Hypo boranes	

 $B_3H_6^+$, B_8H_{16} , B_4H_8 , B_5H_{11} . (b) Calculate the styx number of B_5H_9 and draw the

- possible structure of the compound. (c) What happens when $[Os_2Cl_6]^{2-}$ is reduced with
- N₂H₄? Write down the structure of the final product.

GROUP - B

- (a) For SO₃²⁻ ion, show that symmetry operations belong to three different class.
 - (b) Explain why the formation of a crystal with D_{4d} symmetry is impossible.

4

2

3

2

(c)	What do you mean by "point group"? Identify the point group for each of the following molecules:
	(i) SOCIF
	(ii) Ethane (staggered)
	(iii) B_2H_6
	(iv) XeF ₄ .
(a)	Justify that the sum of the squares of the dimensions of the irreducible representations of a group can not be greater than the order of the group.
(b)	Write the "Hermann-Mauguin" notation for the following point groups:
	C_{4v} , O_h
(c)	Find the order of the improper axis in the following molecules and identify the other elements of symmetry generated by this axis.
	(i) PCl ₅

(ii) Ni(CO)₄.

(d) Find the subgroups of D_{4h} group.

7.	(a)	$[\text{Ni}(\text{H}_2\text{O})_6]^{2^+}$ gives absorption at 8500, 15200 and 26000 cm ⁻¹ . Explain.	2
	(b)	Verify that the scalar product of vectors \overrightarrow{M} and \overrightarrow{N} in p -dimensional space is equal to the sum of the products of the lengths of projections of the vectors in p -orthogonal axes with no cross terms.	3
	(c)	A borane molecule has its styx number 4020. Predict the formula of the molecule and draw the possible structure.	2
	(d)	Show that if P is conjugate with Q and R , then Q and R are conjugate with each other. (Where P , Q and R are the elements of a group).	1
8.	(a)	Evaluate all the term symbols associated with p^2 electronic configuration.	2
	(b)	Draw the active site structure of oxygenated form of hemerythrin.	2
	(c)	What is the most stable oxidation states of "Ru" and "Rh"?	1

_

(e) Explain why the electronic spectral bands due to d-d transitions in a transition metal complex are broad.