M.Sc. 3rd Semester Examination, 2012

CHEMISTRY

PAPER-CEM-302

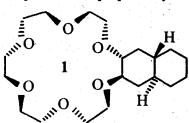
The figures in the right-hand margin indicate marks

(Organic Special)

[Marks: 40]

Time: 2 hours

Answer any five questions taking atleast two from each Group


GROUP - A

1.	(a)	Define template effect.	2
7	<i>(b</i>)	How does macrocyclization work even though it	
	(0)	is an entropically disfavorable process?	2
	*		

(c) How does 18-crown-6 bind a monovalent cation? 2

(Turn Over)

(d) Name the compound 1 and propose a synthetic route.

- 2. (a) Write the applications of crown ethers. 2
 - (b) How can one use 'U'-tube transport experiment for the separation of ions/molecules?
 - (c) Design a suitable receptor for monopotassium salts of a dicarboxylic acid, synthesize it and show the mode of its complexation.
- 3. (a) What is aromatic-aromatic $(\pi \pi)$ interaction? 2
 - (b) Show schematically the potential energy diagram for two interacting π -atoms as a function of their orientation.
 - (c) Charge transfer transitions observed for EDA complexes are a consequence not a cause of the more general π-π interaction.
 - (d) Give an example of Host-Guest complexation utilizing aromatic-aromatic interaction.

2

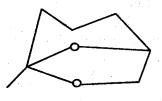
- 4. (a) What are the different types of natural penicillin obtained from microbial sources? Write their names. State the different path ways by which the pathogenic microbes are inhibited by antibiotics.
 - (b) Synthesise d-penicillamine starting from d, l-valine. 4
- 5. Outline the different steps for the synthesis of benzyl penicillin from phthalimide as carried out by sheehan et.al.

GROUP - B

- 6. (a) Write the significance of multiple recognition sites in the selection of substrates during host-guest complexation.
 - (b) Design a suitable chiral host for complexing L-Trp and show the mode of its complexation.
 - (c) Design a receptor for the complexation of barbital 2. 2
 - (d) Design, and explain the mode of action of a protease enzyme mimic.

(Turn Over)

2


2

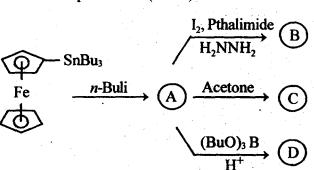
PG/IIIS/CEM-302/12

7.	(a)	What are cyclodextrins?	2
	(b)	p -chlorination of anisole is preferred in water in the presence of β -CD with rate acceleration. How do you explain this observation?	2
	(c)	Describe the use of a cyclodextrin derivative as a Ribonuclease enzyme mimic.	4
8.	(a)	Define hydrophobic effect.	, 2
	(b)	How can water act as a better solvent than common organic solvents for a simple Diels -Alder reaction? Illustrate with examples.	3
•	(c)	What are 'salting in' and 'salting out' agents?	3
9.	(a)	Define: Synthon and Synthetic Equivalent. What are the synthetic equivalents for the following synthons:	5
	\$	(i) PhCH ₂	
		(ii) PhCH ₂	
		(iii) Ph	
	(b)	What are the criteria for good disconnection?	3

10. Explain the term (i) Functional group interconversion and (ii) controll. Illustrate their uses in the retrosynthetic analysis of the following compound:

(Inorganic Special)

[Marks: 40]


Time: 2 hours

Answer any four questions

1. (a) NiCp₂ readily reacts with a weak acid HF to yield [NiCp(η⁴-C₅H₆)] [⊕]. On the other hand, ferrocene reacts with a strong acid and the protonation occurs at Fe to produce [Fe(Cp)₂H]⁺. Why does the protonation occur at different sites in these complexes? Which reaction is facile? Give a plausible mechanism.

3

(b) Predict the products -(A - D)

- (c) Write down the synthesis of $(\eta^6$ -arene)₂Cr by Fischer-Hafner method. What are the limitations for this method? 2 + 1
- 2. (a) Explain diamagnetism in Fe (CO),
 - (b) Synthesize

(C₅H₅)₂ Mo(H)₂; starting from MoCl₅.

(c) Complete the following reaction: 5

$$\begin{array}{c|c}
(i) & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

(Continued)

(ii)
$$Cl + Ni(CO)_4 \longrightarrow$$

(iii)
$$\bigoplus$$
 Ac₂O \longrightarrow i) POCl₃/DMF \longrightarrow ii) NaOAc \longrightarrow iii) NaOH/dioxane

- 3. (a) Classify hydrogenation catalystic.
 - (b) Briefly discuss the catalytic cycle of alkene hydrogenation reaction by Wilkinson's Catalyst.
 - (c) Mention the name and structure of two hydrogenation catalysts other than Wilkinson catalyst.
 - (d) What is insertion reaction?
- 4. (a) Write down the reactions involved in the 'Wacker Process'.

	(b)	Draw the catalytic cycle of wacker Oxidation.	4
	(c)	What is 'Hydroformylation Reaction'? Which catalyst is generally used for this process?	2
	(d)	Write down the drawbacks related to the 'Monsanto Process'.	2
5.	(a)	Explain why X-rays are suitable probe for exploring structure of crystalline solid materials.	1
	(b)	Show that the condition for bright diffraction spots in X-ray diffraction pattern from a solid crystalline material is $\Delta K = G$. Here ΔK is the change in the wave vector and G is the reciprocal wave vector.	3
	(c)	From the above expression derive the Bragg's law of diffraction.	3
	(d)	Derive Laue diffraction conditions in case of diffraction from crystalline solids. Interpret these equations.	3
6.	(a)	What is reciprocal lattice and give its importance.	2
	(b)	Show that the reciprocal lattice of FCC lattice is BCC lattice.	4

PG/IIIS/CEM-302/12

(Continued)

(c)	Derive an expression for the crystal structure	
. :	factor and from it give the systematic absence	
	conditions for a FCC lattice.	4

7. (a) How can you stabilize +VI oxidation state of Fe.

Give example.

(b) How Ni(III) complex can be prepared? Discuss with a suitable example. 1+2

(c) Write down the synthesis of $K_4[Ru_2OCl_{10}]$. Explain the diamagnesim of the complex. 2+3

(Physical Special)

[*Marks* : 40]

Time: 2 hours

Answer any four questions taking two from each Group

GROUP - A

1. Use, without derivation, the expression connecting entropy and molecular partition function and hence obtain Sackur-Tetrode equation for the molar entropy of an ideal monatomic gas.

10

2. Define the probability that a canonical system 'A' under the condition of statistical equilibrium is in a state with energy ' E_a ' and derive the Gibbs canonical distribution.

3. What is meant by Bose-Einstein condensation?

Obtain the expression for the temperature at which the condensation phenomenon may occur.

2 + 8

- 4. (a) Discuss different steps involved in the determination of heat of ion-solvent interaction by Eley-Evan's model.
 - (b) Why limiting Debye-Hückel equation of meanionic activity co-efficient needs modification?
 Convert the extended form to the limiting form of Debye-Hückel equation under proper condition.

GROUP - B

5. (a) What do you understand by the term microscopic diffusion controlled reaction? Derive the expression of rate constant for full microscopic diffusion controlled reaction? 2+6

- (b) The rate of a reaction in solution at 30 °C is increased by 4 times when the pressure difference was made to 1000 atm. Calculate the volume of activation of the reaction.
- 6. Derive the appropriate expression which show the application of absolute reaction rate theory in viscosity problem.
- 7. (a) The following reaction occurs in aqueous solution

$$Cr(H_2O)_6^{3+} + CNS^- \longrightarrow Cr(H_2O)_5CNS^{2+} + H_2O$$

Deduce qualitatively the following:

- (i) The effect on the rate of decreasing dielectric constant,
- (ii) The effect on the rate of increasing ionic strength,
- (iii) The effect on the rate of increasing the hydrostatic pressure,
- (iv) The sign of the entropy of activation.

- (b) For the reaction between two nonionic species A and B in water at 25 °C, radius of A and B are 0.3 nm and 0.4 nm respectively. Calculate the rate constant in dm³m⁻¹sec⁻¹. Viscosity coefficient of water is 0.9 cp at this temperature.
- 8. (a) What is an electro-capillary curve? What information can you obtain from such curve? 1+2
 - (b) Starting from equation

$$d\gamma = -q_M dV - \frac{q_M}{Z_j F} d\mu_j - \sum \Gamma_i d\mu_j$$

Derive

$$\left(\frac{d\gamma}{2RTd\ln a_{\pm}}\right)_{\text{const.} V_{-/a}} = -\Gamma_{+/-}$$

for 1:1 type of electrolyte, where $\gamma = \text{surface}$ tension and $\Gamma_i = \text{surface}$ excess for *i*-th type of species at the interface, and all other terms bean usual significance.