M.Sc. 4th Semester Examination, 2013

CHEMISTRY

PAPER-CEM-404

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

(Organic Special)

Answer any four questions

1. (a) Make a comparative chart for the following rubbers in respect of the points mentioned:

Rubbers: (i) Natural rubber (ii) SBR (iii) Neoprene (iv) Polyurethane rubber

Points:

(i) Chemical structure (ii) Vulcanisation agent used in vulcanising the rubber (iii) Stretching crystallisation.

(Turn Over)

4

(b)	Write down the average compositions of natural rubber latex and smoked sheet rubber. $2+2$	
(c)	How is natural rubber latex stabilised? Name two coagulating agents used to coagulate natural rubber latex. 1 + 1	
(a)	State the purpose of compounding of rubber. Name the principal compounding ingredients of rubber with suitable examples in each case. 2 + 4	
(b)	Mention the changes that take place in the properties of rubber during vulcanisation. 2	
(c)	Suggest a mechanism for the vulcanisation of natural rubber using sulfur, accelerator and ZnO as the vulcanisation system.	
(a)	Describe the suspension polymerisation process for the synthesis of PVC.	
(b)	Why PVC must be plasticised? Name some plasticizers of PVC. 1 + 1	

(Continued)

2.

3.

PG/IVS/CEM-404/13

- (c) Suggest a mechanism for the heat degradation of PVC. Give some examples of stabilisers. 2 + 1
- (a) Write down a typical composition of the polymerisation system for the synthesis of SBR through emulsion polymerisation 2 process.
 - (b) Give an example of a flame resistant rubber. Mention its major uses. 1 + 3
 - (c) Name the monomers used to synthesise nitrile rubber. Write down its chemical structure. Mention the important properties of nitrile rubber. 1 + 1 + 2
- 5. (a) Name the monomers used to synthesise epoxy resin. How are the monomers prepared? Write down the reaction between the monomers that leads to the formation of epoxy resin. 1 + 2 + 2
 - (b) Define the term 'melt flow index' as applicable to polyethylene. How is it related to molecular weight of polyethylene? 2 + 1

PG/IVS/CEM-404/13

(Turn Over)

- (c) Write a short note on environmental stress cracking of polyethylene. 2
- (a) What are phenol-formaldehyde resins? Describe the synthesis of 'B' stage and 'C' stage resins mentioning the raw materials used and the reactions involved in the synthesis. 1 + 5
 - (b) Mention the main properties and applications of alkyd resins. 2 + 2
- Write short notes on any four of the following:
 - $2\frac{1}{2} \times 4$ (i) Manufacture of smoked sheet rubber from natural rubber later
 - (ii) Properties and applications of polycarbonates.
 - (iii) Synthesis of high density polyethylene.
 - (iv) Properties and uses of EPDM rubber.
 - (v) Synthesis of nylon 66.
 - (vi) Non-sulphur vulcanisation of rubber.

PG/IVS/CEM-404/13

(Continued)

(Physical Special)

Answer any four questions

1.	(a)	Write critical notes on sampling of gases and vapours.	4
	(b)	How do you propose to control particulate emission?	4
	(c)	What is Flameless Atomic Absorption method?	2
2.	(a)	CO in an air sample can be monitored by Gas Chromatographic method. Explain.	4
	(b)	What are the pre-concentration techniques involved before analysis of the sampled water? Illustrate them.	4
	(c)	List the ten important water quality parameters.	2
3.	(a)	Describe the Ion Selective Electrode method for the analysis of the fluoride parameter in water sample.	4
PG/	IVS/CI	EM-404/13 (<i>Turn Ove</i>	er)

	(b)	The Flame Ionization Detector is most useful for the analysis of hydrocarbons. Explain it.	3
	(c)	Give an account of air quality standards of primary air pollutants.	3
4.	ins	scribe the principle of the following trumental techniques in the analysis of lutants:	5
	<i>(t)</i>	Atomic Absorption Spectrophotometry (AAS).	
	(ii)	Non Dispersive Infrared Spectrometry (NDIS)	
5.	(a)	Write an account on monitoring of SO_2 in air.	4
	(b)	For analysis of natural and waste water, two principle types of sampling procedures are	
		employed. Explain.	4
	(c)	How pH of a sampled water is measured?	2
6.	(a)	Draw the conventional flow diagram of municipal waste water treatment plant.	3
DC/I	VS/CI	EM_404/13 (Continu	ed)

	(b)	Describe the different processes by which industrial waste water can be treated.	5
	(c)	Write the principle of reverse osmosis.	2
7.	(a)	Write the efficient discharges from a thermal power plant and chloro-alkali plant.	4
	(b)	Write the problems associated with the agricultural run off in the water bodies.	3
	(c)	Write the principle of electrocoagulation used in the treatment of water.	3
8.	(a)	Discuss the sources of contamination in ground water.	4
	(b)	Discuss the continuous emission monitoring system.	6

MV-175