M.Sc. 4th Semester Examination, 2013 CHEMISTRY

PAPER-CEM-401

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

(Physical Special)

GROUP - A

Answer any one of the following:

 10×1

- 1. State and prove Eckart's theorem for the ground state of a system.
- 2. Calculate the ground state energy of He-atom using variational principle. 10

(Turn Over)

GROUP – B

		Answer any <i>one</i> of the following:	K]
3	. (a)	Calculate using Hückel theory, the charge densities of different carbon atom of butadiene.	5
	(b)	Calculate the bond orders in butadiene.	5
4	. (a)	Derive the <i>n</i> th order perturbation equation for the non-degenerate system.	5
	(b)	Show that the third order perturbation energy can be calculated from first order perturbation wave-function only.	5
	* •	Or	
	(a)	Explain the working principle of an diode with an suitable example.	6
	(b)	Define and derive the expression of geometrical structure factor.	4
PC	G/IVS/CE	M-401/13 (Continue	d)

GROUP - C

Answer any *one* of the following: 10×1

5. (a) Prove that :

$$\sigma = \frac{ne^2\tau}{2m}$$

where the symbols have their usual meanings. 7

- (b) Tantalum-forms a body-centered cubic unit cell with a = 330.2 pm. Calculate the crystallographic radius of tantalum atom?
- 6. (a) What is R_2 centre and narrate the mechanism of formation of a R_2 centre using a suitable example.
 - (b) Define Hall effect and Hall mobility? 2+2

GROUP - D

Answer any *one* of the following: 10×1

7. Use Cartesian co-ordinate as well as internal co-ordinate method to obtain the vibrational

PG/IVS/CEM-401/13

(Turn Over)

modes in ML_5 (Square pyramidal). Comment on your results : 10

	C_{4v}	E	$2C_4$	C_{2}	$2\sigma_{\nu}$	$2\sigma'_{\nu}$		•
•	A_1	1	1	1	1	1	Z	x^2+y^2,z^2
	A_2	1	1	1	-1	-l	R_z	
	\boldsymbol{B}_{i}	1	-1	1	1	-1		x^2-y^2
	B_2	1	-1	1.	-1		en e	xy
	E	2	0	-2	0	0	$(x,y)(R_x,R_y)$	(xz, yz)

- 8. (a) What is direct product representation? How does it help in determining the zero and non-zero value of transition moment integral. 5
 - (b) Obtain vibrational modes in HCN using integration method. Hence find the R and vibrational Raman activity of those modes.

$C_{\alpha v}$	E	$2C_{\alpha}^{\theta}$	ασ,	
$\overline{A_1}$	1	1	1	Z
A_2	1	1	-1	R_z
E_1^-	2	2cosθ	0	$(x,y),(R_{x},R_{y})$
E_2	2	.2cσs2θ	0	
E_3	2	2cos3θ	0	

PG/IVS/CEM-401/13

(Continued)

(Organic Special)

Answer any five questions taking at least two from each Group

GROUP - A

- 1. (a) State and illustrate (using orbital pictures) taking (R)-EtCHMeCOPh as an example the Felkin-Anh model (acyclic) of stereoselective nucleophilic (RMgBr) addition leading to Cram product as major diastereomer.
 - (b) How anti-Cram product can be obtained as major diastereomer from the same set of reactants as in (a)? Explain your answer.
 - (c) Explain the product ratio of the following reactions in terms of a suitable model:

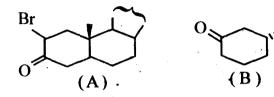
O

NaBH₄

Isopropyl alcohol

When
$$X = Cl$$
 minor major

When $X = OH/NH_2$ major minor


PG/IVS/CEM-401/13

(Turn Over)

3

2. Comment on the following:

- 4×2
- (i) The 2-bromo-3-ketosteroid (A) [Partial structure shown], known to have axial Br, shows a positive cotton effect ORD curve.
- (ii) (R)-3-Methylcyclohexanone(B) shows a positive cotton effect ORD curve.

- 3. (a) Comment on the chirality, stability and sign of torsion angles of ring junction in the central ring of (i) cis-syn-cis and (ii) trans-anti-trans isomers of perhydroanthracene.
 - (b) Identify the compounds A E (Conformational structure) in the following transformations:

PG/IVS/CEM-401/13

(Continued)

OH

OH

H

H₂/Pt

AcOH

AcOH

A

CrO₃

$$k_1$$

C Base

No epimerisation

B

CrO₃
 k_2

D

Base

(epimer of D)

4. What is (i, j) sigmatropic shift? Predict the product/s of the following reaction indicating Frontier-Orbital-Interaction (Attempt any three):

$$2+3\times2$$

$$(i) \qquad \stackrel{D}{\longrightarrow} \qquad \stackrel{\Delta}{\longrightarrow}$$

(ii)
$$C_4H_9$$
 $\Delta > ?$

(Turn Over)

(iii)
$$H_3C$$
 CH_3 CH_3 Δ

$$(iv) \qquad \begin{array}{c} OH \\ H_3C \\ H_3C \\ \end{array} \qquad \begin{array}{c} \Delta \\ \end{array} ?$$

GROUP - B

- 5. Answer the following questions:
- 4×2
- (a) How can you explain that upon quenching the acetolysis of threo-3-phenyl -2-butyl tosylate after 1.5 times its half life, the remaining start material that recovered is optically inactive?
- (b) The parabolic Hammett plot obtained in the reaction:

$$p - X - C_6H_4CH_2CI + C_6H_5NH_2$$

upon plotting $\log k / \log k_0$ against σ values of X indicates a change in the transition state. Elucidate.

(Continued)

- 6. Account for any two of the following:
 - (i) The value of ρ (5.09) of the reaction of diphenyl methyl chloride with ethanol indicates that the reaction is more likely to proceed via S_N1 rather than S_N2 pathway.
 - (ii) A positive slope in a linear Hammett plot indicates that the reaction is favoured (higher yield and/or faster rate when the reacting molecile carries an electron acceptor substituent while a negative slope indicate that the reaction is facilitated when the reacting molecule carries an electron donor substituent.
 - (iii) In the base induced dehydrobromination of aryl ethyl bromides a linear Hammett plot requires the use of σ -rather than σ .
- 7. What is Yukawa-Tsuno equation, both in its original and in its collective form? What is the conceptual basis of calling it a "sliding scale"? How does the $r^{+/-}$ values of the thermally induced Beckmann Rearrangement of acetophenone oxime picryl either and the same rearrangement

(Turn Over)

 4×2

of acetophenone oxime in 94.5% sulfuric acid indicate that both the reactions proceed via similar intermediates?

8

8. Discuss the principle behind the deduction of Taft's Dual Substituent Parameter treatment in Correlation Analysis. How are the anomalies observed while correlating $\log k / \log k_0$ values with σ values of the substituents in the dediazoniation of m- and p- substituted arly diazonium compounds can be explained by using Dual Substitute Parameter Treatment.

8

Or

Define "supra" and 'antara' facial cycloadation reaction with a suitable example. Predict the products of the following reactions (attempt any *three*): $2+3\times2$

(i)
$$\left\langle N \right\rangle + \text{EtO}_2\text{C} - \text{C} \equiv \text{C} - \text{CO}_2\text{Et} \xrightarrow{hv} \rightarrow$$

(ii)
$$CH_2=CH-CH-C(CH_3)_2-CH_2-CH=CH_2\frac{hv}{CuCl}$$

OH

PG/IVS/CEM-401/13

(Continued)

$$(iii)$$

$$+ \sum_{CN}^{CN} \xrightarrow{CN} \xrightarrow{\Delta} ?$$

(iv) COOMe + COOMe
$$\xrightarrow{\Delta}$$
?

(Inorganic Special)

Answer any four question

 10×4

- 1. (a) The number of f-electrons in Eu³⁺ and Am³⁺ is same, but they have different magnetic moment value. Explain.
 - (b) Use Hund's rules to determine the values of S, L, and J in the ground state of an P_m³⁺ ion. Calculate the Lande' g-factor, total magnetic moment, and the magnetic moment along the field direction.

(Turn Over)

- (c) Define paramagnetic and diamagnetic substances on the basis of their values of magnetic susceptibility and intensity of magnetization.
- (d) What do you mean by "magnetically dilute system"?
- 2. (a) Why is Mn^{2+} the only ion among the divalent first transition series metal ions whose magnetic moment is predicted by the μ_1 equation?
 - (b) Discuss the magnetic properties of the lanthanide ions and give a comparison of the magnetic properties of the lanthanide and actinide ions.

 4 + 2
 - (c) What is the value of magnetic dipole moment associated with a loop carrying current?
- 3. (a) Electron transfer reaction between $[Fe(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$ is much faster than between $[CO(NH_3)_6]^{3+}$ and $[CO(NH_3)_6]^{2+}$ Explain.

 (Con^{1})

3

(b)	Explain	why	substitution	reaction of	
	[Cr(CO)] is v	ery slow, but	substitution	
	reaction	of	isoelectronic	c complex	
	[V(CO) ₅ (NO)]i	is very fast.		3

- (c) Assign inner and outer sphare reaction mechanism for the reaction between [CO(NH₃)₅Cl]²⁺ and Cr²⁺ in acidic solution.

 Justify that this reaction follow inner sphare reaction mechanism.

 3+1
- 4. (a) What is the difference between the magnetic field strength H and magnetic induction B?

 How are they related to each other?
 - (b) Write short notes on:

5 + 3

- (i) Spin-orbit interaction
- (ii) Ferrimagnetism.
- 5. (a) Among the metal ions Ni(II), Pd(II) and Pt(II), only Pt(II) shows significant trans effect-comment.

. .

(Turn Over)

(b) The ratios of the constants for reduction of [CO(edta)Cl]²⁻ and [CO(edta)(H₂O)] by various reductants at 25°C are given below. Comment about the inner or outer sphare nature of these reactions.

Reductant	K _{cl} /K _{aqua}
[Fe(CN) ₆] ⁴⁻	33
Ti 3 ⁺	31
Cr ²⁺	2 ×10 ³
Fe ²⁺	>3×10 ²

(c) In acidic solution of [CO(NH₃)₅(CO₃)]⁺ is converted to its corresponding aqua complex for removal of CO₂, but when the reaction is carried out in presence of H₂O¹⁸, no O¹⁸ is found in the product. Explain.

(d) Give general expression for base hydrolysis reaction and comment on the order of the reaction. Write D-CB mechanism for [CO(NH₃)₅Cl]²⁺. 1+2

(Continued)

3

2

- 6. (a) What do you mean by "multiplet width"?

 Derive an expression for magnetic moment for a substance whose "multiplet width" is large in comparison with kT.

 1+6
 - (b) Define "Curie law" and "Curie-Weiss law".

 What is the significance of Weiss constant?

 2+1
- 7. (a) Write the mechanism for all types of dissociative reactions of coordination compounds. Derive rate law expression for any one of these dissociative reaction. 3 + 2
 - (b) Write the generalize mechanism for inner sphare electron transfer reaction. What is the main evidence of this reaction?
 - (c) Comment about the stereochemical nature of square planar ligand substitution reaction. 2