M.Sc. 2nd Semester Examination, 2013 CHEMISTRY

PAPER-CEM - 204

Full Marks: 40

Time: 2 hours

Answer any four questions

The figures in the right-hand margin indicate marks

Provide mm graph papers wherever required

- 1. (a) Define manufactured fuels with example.
 - (b) What is the significance of octane number.
 - (c) What is the significance of volatile matter in coal?
 - (d) Define carbonization. Differentiate between HTC and LTC. 2+2+2+4
- 2. (a) Why pretreatment of petroleum crude is necessary?

(Turn Over)

- (b) What is fractional distillation?
- (c) What is reforming?
- (d) Describe Bergius process.

$$2 + 2 + 2 + 4$$

3. At room temperature sucrose is hydrolyzed by the catalytic action of the enzyme sucrase as follows:

Starting with a sucrose concentration, $C_{Ao} = 1.0$ millimol/lit and an enzyme concentration, $C_{Eo} = 0.01$ millimol/lit, the following kinetic data are obtained in a batch reactor:

C _A (millimol/lit)	0.84	0.68	0.53	0.38	0.27	0·16	0.09	0.04	0.018	0.006	0.0025
<i>t</i> (hr)	1	2	3	4	5	6	7	8	9	10	11

Determine whether these data can be reasonably fitted by a Kinetic equation of the Michaelis-Menten type or:

$$-r_A = \frac{K_3 C_A C_{Eo}}{C_A + M}$$

PG/IIS/CEM-204/13

(Continued)

where, M is Michaelis constant. If the fit is reasonable evaluate the constants K_3 and M.

4. We are planning to operate a batch reactor to convert A into R. This is a liquid reaction, the stoichiometry is:

and the rate of the reaction is given in the following table:

C _A in (mol/lit)	0.1	0.5	0.3	0.4	0.5	0.6	0.7	9-8	1.0	1.3	2.0
-r _A in mol/lit.min	0.1	0.3	0.5	9.6	0.5	0.25	0-10	0.06	0.05	0 -045	0.042

How long must we react each batch for the concentration to drop from $C_{Ao} = 1.3$ mol/lit to $C_{Af} = 0.3$ mol/lit?

- 5. (a) Explain how integral analysis of a kinetic data set is carried out.
 - (b) Derive the design equations for constant volume and variable volume batch reactors.

(Turn Over)

PG/IIS/CEM-204/13

- (c) In a homogeneous isothermal liquid polymerization, 20 % of the monomer disappears in 34 min for initial monomer concentration of 0.04 and also for 0.08 mol/lit. What is the rate of disappearance of the monomer?

 3 + 4 + 3
- 6. (a) Derive Fick's first law of diffusion.
 - (b) Formulate inter-phase mass transfer for an immiscible liquid-liquid system using the equilibrium relationship:

$$C_{A1i} = mC_{A2i}$$

where C_{A1i} is the interface concentration of the diffusing component A in the liquid phase 1 and C_{A2i} is the same in the liquid phase 2.

(c) What is overall mass transfer coefficient? 3+5+2