2008

CHEMISTRY

PAPER — CH - 1103

Full Marks: 40

Time: 2 hours

Answer four questions taking at least two from each Group

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP-A

- 1. (a) What do you mean by 'Trigger mechanism'?
 - (b) Discuss Hill's equation.
 - (c) Write a note on ' N_2 -fixation'.
 - (d) What is "Hemosiderin".

2 + 3 + 3 + 2

- 2. (a) How will you synthesize "ruthenates"?
 - (b) Write down the synthesis and structure of "Osminate"?
 - (c) What happen, when
 - (i) RuO₄ is treated with aq. HCl in presence of KCl.
 - (ii) OsF₆ is treated with CO in presence of SbF₅.
 - (d) Write short note on K_2 [Pt (CN)₄] $3H_2O$.
 - (e) How will you synthesize anh. VOSO₄?
 - (f) Write down the structure of NbOCl₃. 1+2+3+2+1+1
- 3. (a) Identify the core structure of the following species on the basis of Wade's rules:

$$CB_{10}H_{11}^{-}$$
, $(\eta^{5} - C_{5}H_{5})$ Co $(C_{2}B_{9}H_{11})$.

(b) A borane molecule whose styx number is 4012, find out its formula and predict how many electron pair bonds are there.

(c) Carryout the following transformation:

1,
$$2 - C_2 B_{10} H_{12} \rightarrow (HOOC)_2 C_2 B_{10} H_{12}$$
.

- (d) Justify that $C_2B_9H_{11}^{2-}$ is more effective as a ligand than $C_5H_5^-$.
- (e) Complete the following reaction:

$$C_2B_9H_{11}^{2-} + Mo(CO)_6 \xrightarrow{h v}$$

$$(2+2)+2+1+2+1$$

- 4. (a) Derive the transformation matrix for rotation by an angle ϕ about the y-axis of a point in xz plane.
 - (b) Chromium (II) fluoride and manganese (II) fluoride both have a central metal ion surrounded by six fluoride ligands. All the Mn-F bond distances are equivalent but all Cr-F bond distances are not equivalent. Provide an explanation.
 - (c) Discuss the role of the perfluoro chemicals (PFCs) as synthetic oxygen carriers.

- (d) What are the "Picket-fence" porphyrins and why they are used in model studies of oxygen binding to hemoglobin and myoglobin?
- (e) What is Creutz Taube cation? 3+2+2+2+1

GROUP-B

- 5. (a) Prove that the vectors whose components are the characters of two different irreducible representations are orthogonal.
 - (b) Considering P—O bond along z-axis, derive the matrix representation of vertical planes in POCl₃ molecule.
 - (c) Identify the point group for each of the following molecules:
 - (i) Be(CH₃COCHCOCH₃)₂(ignore H atoms)
 - (ii) ClF_2^+
 - (iii) Staggered Cr(C₆H₆)₂
 - (iv) AsF_4^- .

3 + 5 + 2

- 6. (a) Prove that if a C₄ axis and one plane containing this axis exists then there must be a second plane which contain C₄ axis and at an angle of 45° to the first one.
 - (b) Explain why the ligand field (d-d) bands are shifted only slightly for [CoX (NH₃)₅]²⁺ ions (X⁻=F⁻, Cl⁻, Br⁻ and I⁻), but charge-transfer bands are shifted greatly for the series?
 - (c) Prove that each element in a group has a unique inverse.
 - (d) Classify the following Oxides as normal or inverse spinel with explanation:

3 + 3 + 1 + 3

7. (a) Using "Great Orthogonality Theorem" prove that the sum of the squares of the characters in any irreducible representation equals to the order of the group.

- (b) From the reaction of NiBr₂ and Ph₂Et P, it is possible to isolate green crystals of [Ni(Ph₂Et P) Br₂], which have a magnetic moment of 3.20 B.M. and red crystals of [Ni(Ph₂Et P) Br₂], which have a magnetic moment of zero. When either of these is dissolved in dichloromethane at 40°C, the resulting solution has a magnetic moment of 2.69 B.M. Suggest structures for the green and red crystals and offer an explanation for the solution magnetic moment.
- (c) The ligand to metal charge transfer bands increases in energy in the series:

 [Co I₄]⁻ < [Co Br₄]⁻ < [Co Cl₄]⁻. Explain.
- (d) Explain why the electronic spectral bands due to d-d transitions in a transition metal complex are broad. 3+3+2+2
- 8. (a) Write notes on:
 - (i) Molybdenum blue
 - (ii) Ruthenium red.

- (b) What are electron transport protein? Give examples.
- (c) Discuss the origin of red colour of Rubredoxin. $(3 \times 2) + 2 + 2$