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ABSTRACT
Let G be a (p, q) graph. Let f be a function frégnfG) to the set {1, 2, . . ., k} where k
is an integer 2 < k |V (G)|. For each edge uv assign the label r &hés the remainder
when f(u) is divided by f(v) (or) f(v) is dividedytf(u) according as f(up f(v) or f(v) >
f(u). Then the function f is called a k-remainderdial labeling of G if [v(i) — v (j)| <
1,i,je{1, ..., k} where v(x) denote the number of vertices labeled witme g — |
< 1 wheren andn, respectively denote the number of edges labelgd am even
integers and number of edges labeled with an otkelyéns. A graph admits a k-
remainder cordial labeling is called a k- remainderdial graph. In this paper we
investigate the 3- remainder cordial labeling bétraef the Web graph, Umbrella graph,
Dragon graph, Butterfly graph, etc,.
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1. Introduction

Graphs considered here are finite and simple. Glapdling is used in several areas of
science and technology like coding theory, astronarincuit design etc. For more details
refer Gallian [1]. The origin of graph labelinggsaceful labeling which was introduced
by Rosa (1967). Ponraj et al. [3,5], introduced airder cordial labeling of graphs and
investigate the remainder cordial labeling behagfarertain graphs, and also the concept
of k-remainder cordial labeling introduced [4,6&fd investigate the 4-remainder
cordial labeling behavior of Grid, Subdivision afown, Subdivision of bistar, Book,
Jelly fish, Subdivision of Jelly fish, Mongoliannte Flower graph, Sunflower graph and
Subdivision of Ladder graph,l0 K;, L, O 2K;, L, O K,. Recently, Ponraj et al. [8,9],
further introduced the 3-remainder cordial labelb@havior of certain graphs. we prove
that path, cycle, star, comb, crown, wheel, fanyasg of path, subdivision of wheel,
subdivision of star, subdivision of comb, armedwampK; , © K, are 3-remainder cordial.
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In this paper we investigate the 3-remainder condibeling behavior of Web graph,
Umbrella graph, Dragon graph, Butterfly graph,.eterms are not defined here follows
from Harary [2] and Gallian [1].

2. Preliminary results

Definition 2.1. The butterfly graph (By,) is a two even cycles of the same order say C
sharing a common vertex with m pendant edges athahthe common vertex is called a
butterfly graph.

Definition 2.2. The umbrella graph (L}) is obtained from a fan,= B, + K; where R=
Uy, ...., Uy and V(K) = {u} by pasting the end vertex of the path=R,va, ..... , \ip tO
the vertex of Kof the fan F.

Definition 2.3. The web graph (W) is the graph obtained from a closed Helm,®i
adding a single pendent edge to each vertex ajuber cycle.

Definition 2.4. A dragon graph is a graph formed by joining an eerdex of a path o
a vertex of the cycle £ It is denoted as @ R.

2. k-remainder cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let f be a function frdrtG) to the set {1, 2, . ..
, k} where k is an integer 2 <% |V (G)|. For each edge uv assign the label r whése
the remainder when f(u) is divided by f(v) (or))ffe divided by f(u) according as f(&)
f(v) or f(v) > f(u). The function f is called a k-remainder catdabeling of G if |y (i) -
vi (DI<1,i,je {1, ..., k}where y(x) denote the number of vertices labeled witma a
Me — Mol < 1 wherene andn, respectively denote the number of edges labeldd an
even integers and number of edges labeled witlhdahintegers. A graph with a k-
remainder cordial labeling is called a k- remainetendial graph.

First we investigate the 3-remainder cordial laiplhehavior of the web graph WG

Theorem 2.2.The web graph WGEs 3-remainder cordial for all even values of n.

Proof: Let V(WG)=V(C, X P,) U {w;: 1< i< n}and E(WG) = E(G, X Py) U {viw}:

1< i< n}. Thenitis easy to verify that WGas 3n vertices and 4n edges.

First we consider the vertices, w; and w. Assign the labels 1,2 and 3 respectively to
the vertices y v; and w. Next consider the vertices,w, and w. Assign the labels 1,3
and 2 to the vertices,uv, and w respectively. Next we move to the verticgsw and

ws and assign the labels 1 ,2 and 3 respectivelgeoértices 4 vs and w. Next assign
the labels 1,3 and 2 to the verticesw, w,. That is assign the labels 1,2 ,3;1, 3, 2; ....;
1, 2,3; 1,3,2 respectively to the verticgsw, Wi; W, Vo, Wo ; .... ; U1, Vinot, Wit} Un, V

n Wp. Note that the vertex condition and edge condiisny(1)= v (2)= w (3)=n ande
=1, = 2n respectively. Hence the function f is 3- remdar cordial labeling behavior of
the web graph Wgzall even values of n.
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Next we investigate the dragor, @ R.

Theorem 2.3 The dragon graph,C@ R, is 3-remainder cordial for all m3 and n=m.
Proof: Let G= wus,..... WUy be the cycle and,P v, v, ,..... \h be the path. Without
loss of generality, unify the verticegwith v;. Clearly the order and size of the dragon
Cn @ R are 2n-1 and 2n-1 respectively.

Case(1): re 0 (mod 3) and n is odd.

First consider the vertices ws ,..... \, of the path. Assign the label 2 to the vertices v
V3 ,eeen W\, and 3 to the verticesyv, ,..... Vh1. Next consider the verticesfor 2< | <

n. Fix the labels 1, and 1 to the first two versiag, and 4. Next assign the labels 1,2,
and 1 respectively to the next three verticggspand 4. Then assign the labels 1,3, and
1 respectively to the next three verticeay) and @. Proceeding like this until we reach
the vertices \»,U,1, and y. Clearly the vertices,uy,U,.;, and y received the labels 1,3,
and 1 for this pattern.

Case(2): re 0 (mod 3) and n is even.

First consider the vertices of the path. Assign the label 2 to the verticesw ,..... V-

1 and 3 to the vertices yv; ,..... Vh. Next consider the verticesfor 2< i < n. Asin

case(1), assign the labels to the vertigédsn2 < i < n-3. Finally assign the labels 1,2,
and 1 respectively to the last three verticesus.,, and u.

Case(3): re 1 (mod 3) and n is odd.

As in case(1), assign the labels to the vertiges the path for X i < n. Next consider
the vertices Ufor 2< i < n. Fix the labels 1,3, and 1 to the first threetices y,u;, and
U4 Next assign the labels 1,3, and 1 respectivetheonext three vertices,us and u,.
Then assign the labels 1,2, and 1 respectivelyi¢onext three vertices,u o, and uso.
Continuing like this until we reach the vertices,u,.;, and u,. Then clearly the vertices
Un2,Un.1, and u, received the labels 1,3, and 1 for this pattern.

Case(4): re 1 (mod 3) and n is even.

As in case(2), assign the labels to the verticed the path fork i < n. Next consider
the vertices gfor 2< i < n. As in case(3), assign the labels to the \asticfor 2< i <
n -3. Finally assign the labels 1,2, and 1 respelstito the last three verticeg.4u .1,
and u,.

Case(b): re 2 (mod 3) and n is odd.

As in case(1), assign the labels to the vertice$ the path for & i < n. Next consider
the vertices ufor 2< i < n. Fix the labels 1,1,3, and 1 to the first foartices u,us, U,
and @. Next assign the labels 1,2, and 1 respectivetheonext three vertices,u;, and
Ug. Then assign the labels 1,3, and 1 respectivellyemext three vertices, U, and ys.
Proceeding like this until we reach the vertices

Un2,Un1, and W, Then clearly the vertices bu .., and u, received the labels 1,3, and 1
for this pattern.

Case(6): re 2 (mod 3) and n is even.
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As in case(2), assign the labels to the vertigesf ¥the path Pfor 1< i < n. Next

consider the vertices for 2< i < n. As in case(5), assign the labels to the \esticfor
2< i < n-3. Finally assign the labels 1,2, and 1 toléisethree vertices,g,u,.4, and y

respectively. Theable -1, establish that the function f is 3- remaindeddrlabeling of
the dragon graph £@ R.

Nature of 1 | v¢(1) v¢(2) v¢(3) Ne | Mo

n=0(mod3| 2n 2n |2n-=3|n |[n1

3 3 3
nEl1(mod3)|2n—2|2n—-2|2n+1|n |n1l

3 3 3
n=E2(mod3|2n—1|2n—-1|2n—-1|n |n1l

3 3 3
Table 1:
Next we investigate the 3-remainder cordial lalmelbehavior of the butterfly graph

BFmn
Theorem 2.4.The butterfly graph BF, is 3-remainder cordial for all m 3 and n=m.
Proof: Let uus ..... WU, and v Vs..... Vv, V1 be the two copies of the cyclg.@ithout
loss of generality, unify the vertices and . Let wy, Wy, ..... W, be the n pendent
vertices. Clearly the order and size of the bugtegraph BF,, are 3n-1 and 3n
respectively.

Case(1):nis odd.

First we consider the verticesai the cycle G Assign the label $1$ to the verticedar
2< i < n. Next we consider the verticesof the another cycle {CAssign the label 2 to
the vertices v, vs,..... M. Then next assign the label 3 to the verticesw,..... V-1
Now consider the pendent verticesfar 1< i < n.

Assign the label 3 to the firgt;—1 pendent vertices and assign the label 2 to timairéng

n-1 .
- pendent vertices.

Case(2):nis even.

As in case(i), assign the labels to the verticeloru2 < i < n. Now we consider the
vertices yof the another cycle CAssign the label 2 to the vertices vs,..... Va1 Then
next assign the label 3 to the verticesw,..... . Now consider the pendent vertices w

for 1< i < n. Assign the label 3 to the fir%étpendent vertices and assign the label 2 to
the remaining} pendent vertices. Thable-2, shows that the function f is 3- remainder
cordial labeling of the butterfly graph BE

Nature of I | vi(1) | vi(2) | vi(3) | Ne Mo
nis od¢ n-1 |n N 3n+1|3n—-1
2 2
nis ever n-1 |n N 3_n 3_n
2 2
Table 2:
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Here we investigate the umbrella graph.U

Theorem 2.5.The umbrella graph }J}, is 3-remainder cordial for all m 3 and n=m.
Proof: Let u,uy, ..... JUoand o, Vo, . i, be the vertices of the umbrella graph U

Let w,W, ..... ,U, be the vertices of the path &d v, vs, ..... W, be the vertices of the fan
F.. Without loss of generality, unify the verticesand \. Then clearly the order and size
of the umbrella graph |} are 2n and 3n-2 respectively.

Case(1): re 0 (mod 3) and n is even.

Assign the label $13$ to the vertices w, ..... , Mys and assign the label 3 to the vertices
Vi) Vogysa .- Voo and followed by assign the label 2 to the verticgs):,
V(na)+a----., Vo. NEXt consider the vertices af the path R First assign the labels 3,2 and
3 to the vertices i, and Y respectively. Next assign the labels 2,1 andthdovertices
Ug,Us, and o respectively. Again assign the labels 3,2 and théovertices ug, and 4
respectively. Next assign the labels 2,1 and heovertices 1,1, and y, respectively.
Proceeding like this until we reach the verticggus.;, and y are received the labels 2,1
and 1 respectively.

Case(2): re 0 (mod 3) and n is odd.

As in case(1), assign the labels to the vertice®ri < i < n, and ufor 1< i < n-3.
Finally assign the labels 3, 2 and 1 to the vestigg,u,1, and | respectively.

Case(3): re 1 (mod 3) and n is odd.

Assign the label 1 to the verticeg v, ..... , V13 and assign the label 3 to the vertices
V(n-1/3)+1 V(n-1/3)+a --+-+» Vh , a@nd followed by assign the label 2 to the veHign.3)+s Vin-
13)+4-----» Vh-1. NEXt consider the vertices af the path R Fix the labels 3,2 and 1 to the
vertices y,Up, and 4 and 1,2,3 and 2 to the vertices,uh2,U,.1, and Y respectively. First
assign the labels 1,2 and 3 to the verticas,uand ¢ respectively. Next assign the labels
2,3 and 1 to the vertices,w, and {4 respectively. Again assign the labels 1,2 andtBao
vertices uo,U1;, and y, respectively. Next assign the labels 2,3 and théovertices
Urs,U14, @nd ys respectively. Proceeding like this until we redioh vertices pg,Un.s, and
Un.4 are received the labels 1,2 and 3 respectively.

Case(4): re 1 (mod 3) and n is even.

As in case(3), assign the labels to the vertigésr\i < i < n. Next assign the labels 2,3
and 1 to the vertices,u,, and y respectively and as in case(3), assign the labelse
vertices yufor4< i < n.

Case(5): re 2(mod 3) and n is odd.

Assign the label 1 to the verticeg v,, ..... , W+13 and assign the label 3 to the vertices
V(n+13)+1 V(n+1/3)+a--.-» Vo @nd followed by assign the label 2 to the vertiogsys):2
Vin+13)+4 - -+, Vo, NEXt consider the vertices af the path R Fix the labels 3,2 and 1 to
the vertices yu,, and 4 and 1,2,3 and 2 to the verticgs;W,,,U,.1, and | respectively.
Assign the labels 2, 3 and 1 to the verticgsspand ¢ respectively. Next assign the
labels 1,2 and 3 respectively to the verticggguand 4. Again assign the labels 2, 3 and
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1 to the vertices jg,u1;, and y, respectively. Continuing like this until we reatie
vertices We, Uns, and 4 are received the labels 2,3 and 1 respectively.

Case(6): re 2(mod 3) and n is even.

As in case(5), assign the labels to the vertigdsrvL < i < n, and assign the labels to
the vertices ufor 1< i < n -2. Finally assign the labels 2 and 3 to tls¢ tao vertices
U1 and y respectively. Theable -3, establish that the function f is 3- remainderdcar

labeling of the umbrella graph.lJ.

Nature of I vi(1) vi(2) vi(3) Ne Mo
n= 0 (mod 3& n is odc 2_n 2_n 2_n 3n—1|3n-3
3 3 3 2 2
n=0(mod3)&niseve| 2n 2n 2n 13n-2|3n-2
3 3 3 2 2
n=1(mod3)&nisod |[2n—2|2n+1|2n+1|3n—-1|3n-3
3 3 3 2 2
n=1(mod3)&niseve | 2n—2|2n+1|2n+1|3n—2|3n—2
3 3 3 2 2
n=2(mod3)&nisod |[2n—1|2n—-1|2n+2|3n—-1|3n—-3
3 3 3 2 2
n=2(mod3)&niseve | 2n—1|2n—1|2n+2|3n—1|3n—-3
3 3 3 2 2
Table 3:

3. Conclusion

Themain aim of this paper was to present blow-up tedol a graph labeling problems
subject to certain conditions. The possible geigatibn is plan to present the sufficient
conditions which guarantee the occurrence of tberhlp.
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