Journal of Physical Sciences, Vol. 24, 2019, 45-51

ISSN: 2350-0352 (print), www.vidyasagar.ac.in/publication/journal

Published on 6 June 2019

On H-hyper Connected Spaces

P. Vimala Devi

The Standard Fireworks Rajaratnam College for Women Sivakasi, Tamilnadu, India E-mail: vimalkathir15@gmail.com

Received 2 December 2018; accepted 23 December 2018

ABSTRACT

In this paper, we define H-hyper connected spaces in generalized topological spaces with hereditary class H and we prove the characterizations of H-hyper connected spaces using μ -open, μ -rare and σ -open sets. Also, we give the relation between μ -hyper connected and H-hyper connected spaces.

Keywords: μ – hyper connected spaces, H-resolvable spaces, H-hyper connected spaces, μ – rare and μ – dense set.

Mathematical Subject Classification (2010): 54D05

1. Introduction

In 2007, Csaszar [1] introduced a class of subsets of a nonempty set called hereditary class and studied modification of generalized topology via hereditary classes. A subfamily μ of P(X) is called a generalized topology (GT) [2] if $\phi \in \mu$ and μ is closed under arbitrary union. The pair (X, μ) is called a generalized topological space (GTS). The elements of μ are called as μ – open sets. The compliments of μ – open sets are called as μ – closed sets. The largest μ – open set contained in a subset A of X is denoted by $i_{\mu}(A)$ [1] and is called μ – interior of A. The smallest μ – closed set containing A is called the μ -closure of A and is denoted by $c_{\mu}(A)$. If (X,μ) is a generalized topological space, then M_{μ} denotes the union of all elements of μ [3]. A GTS (X, μ) is said to be strong if $X \in \mu$. A GT μ is said to be a quasi topology on X if $M, N \in \mu$ implies $M \cap N \in \mu$ [4]. A subset A of X is said to be μ -rare or μ -nowhere dense if $i_{\mu}c_{\mu}(A) = \phi$. The family of all μ -rare sets is denoted by $H_r(\mu)$. For a subset A of X, $A \in \sigma$ (resp. $A \in \pi$) if $A \subset c_{\mu}i_{\mu}(A)$ (resp. $A \subset i_{\mu}c_{\mu}(A)$). A hereditary class H of X is a nonempty collection of subset of X such that $A \subseteq B, B \in H$ implies $A \in H$ [1]. A hereditary class H of X is an ideal [5,6] if $A \cup B \in H$ whenever $A \in H$ and $B \in H$. With respect to the generalized topology μ and a hereditary class H, for each subset A of X, a subset $A^*(H)$ or simply A^* of X is defined by

P. Vimala Devi

 $A^* = \{x \in X \mid M \cap A \notin H\}$ for every $M \in \mu$ containing x [1]. Also, for every $A \subseteq X, c_{\mu}^{\ *}(A)$ is defined as $c_{\mu}^{\ *}(A) = A \cup A^*$ which induces a GTS μ^* finer that μ and is defined as $\mu^* = \{A \subseteq X \mid c_{\mu}^{\ *}(X - A) = X - A\}$ [1]. The elements of μ^* are known as μ^* - open sets and a subset A of (X, μ^*) is called μ^* - closed if X - A is μ^* - open. A subset A of X is said to be $\sigma - H$ - open (resp. $\pi - H$ - open) if $A \subset c_{\mu}^{\ *}i_{\mu}(A)$ (resp. $A \subset i_{\mu}c_{\mu}^{\ *}(A)$)[1]. A hereditary class H is said to be μ - codense [8] if $\pi(\mu) \cap H = \{\phi\}$. A subset A of a GTS (X, μ) with a hereditary class H is called μ - dense (resp. μ^* - dense) if $c_{\mu}(A) = X$ (resp. $c_{\mu}^{\ *}(A) = X$). A GTS (X, μ) is called μ - hyper connected [7] if every nonempty μ - open set G of X is μ - dense. The following Lemmas will be useful in the sequel and we use some of the results without mentioning it, when the context is clear.

Lemma 1.1. [4, Theorem 2.2] If (X, μ) is a quasi topological space, then $i_{\mu}(A \cap B) = i_{\mu}(A) \cap i_{\mu}(B)$ for $A, B \subset X$.

Lemma 1.2. [8, Theorem 2.1] Let (X, μ) be a GTS with a hereditary class H. Then the following are equivalent.

- (a) H is μ -condense.
- (b) $X = X^*$

Lemma 1.3. [3] Let (X, μ) be a GTS with a hereditary class H. If $A \in H$, then $A^* = X - M_{\mu}$.

Lemma 1.4. [9, Lemma 1.3] If (X, μ) is a quasi topological space and $A \subset X$, then $G \cap c_{\mu}(A) \subset c_{\mu}(G \cap A)$ for every $G \in \mu$.

Lemma 1.5. [3, Theorem 3.8] The set $M - H(M \in \mu, H \in H)$ constitute a base B for μ^* .

Lemma 1.6. [8, Theorem 2.9] Let (X, μ) be a GTS with hereditary classes H and S on X. If $H \subset S$, then $A^*(S) \subset A^*(H)$ for every subset A of X.

Lemma 1.7. [11, Theorem 2.14] Let (X, μ) be a quasi topological space and H be an ideal. Then $A^* - B^* = (A - B)^* - B^*$.

2. H – Hyper connected Spaces

A subset A of a GTS (X, μ) is said to be H – dense if $A^* = X$.

Theorem 2.1. Every H – dense set is μ^* – dense.

On H-hyper connected spaces

Proof: Let A be a H – dense subset of X. Then $A^* = X$ and so $c_u^*(A) = A \cup A^* = X$. Therefore, A is μ^* – dense.

The following example shows that the converse of theorem 2.1 need not be true in general.

Example 2.2. Let
$$X = \{a,b,c,d\}, \mu = \{\{\phi\}, \{a\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}\}$$
 and $H = \{\{\phi\}, \{a\}, \{b\}\}\}$. If $A = \{a,b,c\}$, then A is μ^* – dense and $A^* = \{b,c,d\}$.

Definition 2.3. A space (X, μ) with a hereditary class H is called H – hyper connected if every nonempty μ – open set is H – dense.

Clearly, every H-hyper connected space is $\mu-hyper$ connected. Example 2.4 shows that the converse need not be true in general and Theorem 2.5 shows that if X is $\mu-hyper$ connected space with a $\mu-condense$ hereditary class H, then X is H-hyper connected.

Example 2.4. Let $X = \{a,b,c,d\}, \mu = \{\{\phi\}, \{a\}, \{a,b\}, \{a,b,c\}\}\}$ and $H = \{\{\phi\}, \{a\}, \{b\}\}\}$. Clearly, X is μ – hyper connected space. If $A = \{a\}$, then A is a nonempty μ – open set and $c_{\mu}^{*}(A) = \{a,d\}$. Hence X is not a H – hyper connected space.

Theorem 2.5. Let (X, μ) be a quasi topological space with a hereditary class H. Then the following are equivalent.

- (a) X is H hyper connected.
- (b) X is μ hyper connected and H is μ codense.

Proof: $(a)\Rightarrow (b)$ Suppose X is H-hyper connected. Clearly, X is μ - hyper connected. Let U be a nonempty set such that $U\in \mu\cap H$. Since $U\in \mu$, by hypothesis, $U^*=X$. Also, by Lemma 1.3, $U\in H$ implies that $U^*=X-M_\mu$. Therefore, $X=X-M_\mu$ and so $X\cap M_\mu=\phi$ which implies that $M_\mu=\phi$, a contradiction to $\phi\neq U\in \mu$ and so $U\notin \mu\cap H$. Hence H is a μ -codense hereditary class.

 $(b)\Rightarrow (a)$ Let $\phi \neq U \in \mu$ and $x \in X$. Suppose $x \notin U^*$. Then there exists a μ - open set G containing x such that $U \cap G \in H$. Also, $U \cap G \in \mu$ and so $U \cap G = \phi$. Hence $x \notin c_{\mu}(U)$, a contradiction to X is μ - hyper connected. Therefore, $U^* = X$ and hence X is H-hyper connected.

Proposition 2.6. Let (X, μ) be a generalized topological space with a hereditary class H. Then A is $\sigma - H$ - open if and only if there exists μ - open set G such that

P. Vimala Devi

 $G \subset A \subset c_u^*(G)$.

Proof: Suppose A is $\sigma-H-$ open. Then $A\subset c_{\mu}^{i}i_{\mu}(A)$. Let $G=i_{\mu}(A)$. Then $i_{\mu}(A)\subset A\subset c_{\mu}^{i}i_{\mu}(A)$ implies that $G\subset A\subset c_{\mu}^{i}(G)$. Conversely, suppose that there exists $\mu-$ open set G such that $G\subset A\subset c_{\mu}^{i}(G)$. Then $G\subset A\subset c_{\mu}^{i}i_{\mu}(G)\subset c_{\mu}^{i}i_{\mu}(A)$ implies that A is a $\sigma-H-$ open set.

The following Theorem 2.7, Theorem 2.8 and Theorem 2.9 give the properties of $H\!-\!hyper$ connected spaces.

Theorem 2.7. Let (X, μ) be H – hyper connected. If A contains a nonempty μ – open set, then A is σ – H – open.

Proof: Let A be a nonempty set such that A contains a nonempty μ – open set G. Now X is H – hyper connected implies that $G^* = X$. Hence $c_{\mu}^{*}(G) = X$. Therefore, $G \subset A \subset c_{\mu}^{*}(G)$ and so A is σ – H – open, by Proposition 2.6.

Theorem 2.8. If (X, μ, H) is H-hyper connected and $\mu_1 \subset \mu$ is a GT on X, then (X, μ_1, H) is H-hyper connected.

Proof: Suppose that (X,μ,H) is H -hyper connected. Therefore, every nonempty μ -open set is H -dense. Let $\mu_1\subset\mu$. Let G be a μ_1 -open set and so it is a μ - open set. Therefore, $G^*(\mu,\mathrm{H})=X$. Since $\mu_1\subset\mu$, by Lemma 1.6, $G^*(\mu,\mathrm{H})\subset G^*(\mu_1,\mathrm{H})$. Therefore, $G^*(\mu_1,\mathrm{H})=X$. Hence (X,μ_1,H) is H -hyper connected.

Theorem 2.9. Let (X,μ) be a quasi topological space with an ideal H. Then (X,μ,H) is H-hyper connected if and only if (X,μ^*,H) is H-hyper connected. **Proof:** Suppose that (X,μ^*,H) is H-hyper connected . Since $\mu \subset \mu^*$, by Theorem 2.8, (X,μ,H) is H-hyper connected. On the other hand , let G be a nonempty μ^* - open set. Since $\beta = \{U - I : U \in \mu, I \in H\}$ is a base for $\mu^*, U - I \subset G$ for some $U \in \mu$ and $I \in H$. Now (X,μ,H) is H-hyper connected implies that $\mu^* = X$. Therefore, by Lemma 1.7,

$$\begin{split} X-I^* &= U^*-I^* = (U-I)^*-I^* = (U-I)^*-(X-\mathbf{M}_{\mu}) \\ &= (U-I)^* \cap \mathbf{M}_{\mu} \subset (U-I)^* \subset G^*. \quad \text{Therefore,} \quad (X-(X-\mathbf{M}_{\mu})) \subset G^* \quad \text{and so} \\ \mathbf{M}_{\mu} \subset G^*. \quad \text{Also,} \quad X-\mathbf{M}_{\mu} \subset G^*. \quad \text{Hence} \quad \mathbf{M}_{\mu} \cup X-\mathbf{M}_{\mu} \subset G^* \quad \text{and so} \quad X \subset G^* \\ \text{which implies that} \quad X = G^* \quad \text{where G is nonempty} \quad \mu^* - \text{open set. Hence} \quad \left(X, \mu^*, \mathbf{H}\right) \\ \text{is} \quad \mathbf{H} - \text{hyper connected.} \end{split}$$

On H-hyper connected spaces

The following Theorem 2.10 gives the characterization of H-hyper connected spaces using $\mu-open$ sets

Theorem 2.10. Let (X,μ) be a GTS with a hereditary class H. Then X is H-hyper connected if and only if for each nonempty μ -open sets U and V of X, $U \cap V \notin H$. **Proof:** Let U and V be any nonempty μ -open subset of X. Now X is H-hyper connected implies that $U^* = X$. Hence $U \cap V \notin H$. Conversely, suppose that X is not H-hyper connected. Therefore, there exists a nonempty μ -open set U such that $U^* \neq X$. Hence there exists $x \in X$ such that $x \notin U^*$ and so there exists a μ -open set U containing X such that $U \cap V \in H$, a contradiction. Therefore, U is U-dense. Hence U is U-hyper connected.

Theorem 2.11. Let (X, μ) be a GTS with a hereditary class H. If X is H-hyper connected, then the following hold.

- (a) $i_{\mu}c_{\mu}^{*}(A) = M_{\mu}$ for every nonempty πH open set A of X.
- (b) Every nonempty πH open set is μ dense.

Proof: (a) Let A be a nonempty $\pi - H - \text{open set}$. Then $i_{\mu}c_{\mu}^{\ *}(A)$ is a nonempty $\mu - \text{open set}$. Therefore, by hypothesis, $(i_{\mu}c_{\mu}^{\ *}(A))^* = X$ and so $c_{\mu}^{\ *}i_{\mu}c_{\mu}^{\ *}(A) = X$. Also, A is a $\pi - H - \text{open set}$ implies that $c_{\mu}^{\ *}(A) = c_{\mu}^{\ *}i_{\mu}c_{\mu}^{\ *}(A)$ which in turn implies that $c_{\mu}^{\ *}(A) = X$. Hence $i_{\nu}c_{\mu}^{\ *}(A) = i_{\mu}(X) = M_{\mu}$.

Therefore, $i_{\mu}c_{\mu}^{*}(A) = M_{\mu}$ for every nonempty $\pi - H$ – open set A of X.

(b) Suppose A is a nonempty $\pi - H - \text{open set.}$ Then by (a), $i_{\mu}c_{\mu}^{\ *}(A) = M_{\mu}$. Also, A is a $\pi - H - \text{open set implies that } c_{\mu}(A) = c_{\mu}i_{\mu}c_{\mu}^{\ *}(A)$ and so

$$c_{\mu}(A) = c_{\mu}i_{\mu}c_{\mu}^{*}(A) = c_{\mu}(M_{\mu}) = X$$
. Therefore, A is μ – dense.

Theorem 2.12. Let (X, μ) be a quasi topological space with a hereditary class H and $A \subset X$. Then the following hold.

(a)
$$i_{\sigma-H}(A) = A \cap c_{\mu}^* i_{\mu}(A)$$
.

(b)
$$c_{\sigma-H}(A) = A \cup i_{\mu}^* c_{\mu}(A)$$
.

Proof:

(a) $A \cap c_{\mu}^{\ \ i}i_{\mu}(A) \subset c_{\mu}^{\ \ i}i_{\mu}(A) = c_{\mu}^{\ \ i}(i_{\mu}(A)) \cap i_{\mu}c_{\mu}^{\ \ i}i_{\mu}(A) = c_{\mu}^{\ \ i}i_{\mu}(A \cap c_{\mu}^{\ \ i}i_{\mu}(A)),$ by Lemma 1.1. Hence $A \cap c_{\mu}^{\ \ i}i_{\mu}(A)$ is a $\sigma - \mathrm{H}$ -open set. Hence $i_{\sigma - \mathrm{H}}(A \cap c_{\mu}^{\ \ i}i_{\mu}(A)) = A \cap c_{\mu}^{\ \ i}i_{\mu}(A).$

P. Vimala Devi

Now $A \cap c_{\mu}^{i}i_{\mu}(A) \subset A$ implies that $i_{\sigma-\mathrm{H}}(A \cap c_{\mu}^{i}i_{\mu}(A)) \subset i_{\sigma-\mathrm{H}}(A)$ and so $A \cap c_{\mu}^{i}i_{\mu}(A) \subset i_{\sigma-\mathrm{H}}(A)$. Also, $i_{\sigma-\mathrm{H}}(A)$ is $\sigma-\mathrm{H}-$ open implies that $i_{\sigma-\mathrm{H}}(A) \subset c_{\mu}^{i}i_{\mu}(i_{\sigma-\mathrm{H}}(A)) \subset c_{\mu}^{i}i_{\mu}(A)$ and so $i_{\sigma-\mathrm{H}}(A) \subset A \cap c_{\mu}^{i}i_{\mu}(A)$. Hence $i_{\sigma-\mathrm{H}}(A) = A \cap c_{\mu}^{i}i_{\mu}(A)$.

(b)
$$c_{\sigma-H}(A) = X - i_{\sigma-H}(X - A)$$
 Hence by (a),

$$c_{\sigma-H}(A) = X - ((X - A) \cap c_{\mu}^* i_{\mu}(X - A)) =$$

$$(X - (X - A) \cup (X - c_{\mu}^* i_{\mu}(X - A))) = A \cup i_{\mu}^* c_{\mu}(A).$$

Therefore, $c_{\sigma-H}(A) = A \cup i_{\mu}^* c_{\mu}(A)$.

The following Theorem 2.13 gives the characterization of μ – hyper connected spaces using μ – dense, μ – rare and σ – open set.

Theorem 2.13. Let (X, μ) be a quasi topological space. Then the following are equivalent.

- (a) X is μ hyper connected.
- (b) For every subset A of X, either A is a μ dense set or a μ rare set.
- (c) $A \cap B \neq \emptyset$ for every nonempty μ open sets A and B.
- (d) $A \cap B \neq \emptyset$ for every σ o pen sets A and B of X.

Proof: (a) \Rightarrow (b) Suppose that X is μ – hyper connected space. Let $A \subset X$. Suppose A is not a μ – rare set. Then $i_{\mu}c_{\mu}(A) \neq \phi$. Since $i_{\mu}c_{\mu}(A)$ is a nonempty μ – open set by hypothesis c_{μ} i $_{\mu}c_{\mu}(A) = X$. Hence $X = c_{\mu}$ i $_{\mu}c_{\mu}(A) \subset c_{\mu}(A)$ implies that A is a μ – dense set

 $(b)\Rightarrow (c)$ Let A and B be μ – open sets. Suppose $A\cap B=\phi$. Now by Lemma 1.4, $A\cap c_{\mu}(B)\subset c_{\mu}(A\cap B)=c_{\mu}(\phi)=X-\mathrm{M}_{\mu}$ implies that $A\cap c_{\mu}(B)\neq A$. Hence B is not a μ – dense set. Also, $\phi\neq B=i_{\mu}(B)\subset i_{\mu}c_{\mu}(B)$ implies that $i_{\mu}c_{\mu}(B)\neq \phi$ and so B is not a μ – rare set, a contradiction to our assumption. Therefore, $A\cap B\neq \phi$. $(c)\Rightarrow (d)$ Suppose that A and B are nonempty σ – open sets and $A\cap B=\phi$. Then there exists μ – open sets U and V such that $U\subset A\subset c_{\mu}(U)$ and $V\subset B\subset c_{\mu}(V)$. Now $U\cap V\subset A\cap B=\phi$ implies that $U\cap V=\phi$ where U and V are μ – open sets, a contradiction to our assumption. Therefore $A\cap B\neq \phi$.

 $(d) \Rightarrow (a)$ Suppose that A and B are μ -open sets. Then A and B are σ -open sets and so by assumption $A \cap B \neq \phi$. Hence $X \subset c_{\mu}(A)$ and $X \subset c_{\mu}(B)$. Therefore, A and B are μ -dense sets. Hence X is μ -hyper connected.

Theorem 2.14. Let (X,μ) be a quasi topological space. Let the family of all

On H-hyper connected spaces

non μ – dense sets is denoted by $H_0(\mu)$. If X is μ – hyper connected, then $H_0(\mu) = H_r(\mu)$.

Proof: Clearly, $H_r(\mu) \subset H_0(\mu)$. If possible, let $A \notin H_r(\mu)$. Then $i_\mu c_\mu(A) \neq \phi$. Hence there exists $\phi \neq B \in \mu$ such that $B \subset c_\mu(A)$. Clearly, $X - B \in H_0(\mu)$. Now $c_\mu(A \cup (X - B)) = c_\mu(A) \cup c_\mu(X - B) = c_\mu(A) \cup (X - B) \supset B \cup (X - B) = X$ implies that $A \cup (X - B)$ is μ -dense, a contradiction to Theorem 2.17 of [10]. Hence $H_0(\mu) = H_r(\mu)$.

3. Conclusion

The main purpose of this paper was to present H- hyper connected spaces in generalized topological spaces with hereditary class H, highlighting the properties of H- hyper connected spaces. The possible generalization is plan to extend the study of H- hyper connected spaces using various subsets of generalized topological spaces with hereditary class H.

Acknowledgement. The author thanks the referees for their valuable suggestions and comments.

REFERENCES

- 1. A.Csaszar, Modification of generalized topologies via hereditary classes, *Acta Math. Hungar.*, 115 (2007) 29-36.
- 2. A.Csaszar, Generalized open sets in generalized topologies, *Acta Math. Hungar.*, 106 (2005) 351-357.
- 3. A.Csaszar, Extremally disconnected generalized topologies, *Annals Univ. Sci. Budapest.*, 47 (2004) 91-96.
- 4. A.Csaszar, Remarks on quasi topologies, *Acta Math. Hungar.*, 119 (1-2) (2008) 197-200
- 5. K.Kuratowski, Warszawa, 1933.
- 6. K.Kuratowski, Topology I, Academic Press, New York, 1966.
- 7. E.Ekici, Generalized hyperconnectedness, Acta Math. Hungar., 133 (2011) 140-147
- 8. Sheena Scaria and V.Renukadevi, On hereditary classes in generalized topological spaces, *J. Adv. Res. Pure. Math.*, 3(2) (2011) 21-30.
- 9. V.Renukadevi and K.Karuppayi, On modifications of generalized topologies via hereditary classes, *J. Adv. Res. Pure. Math.*, 2(2) (2010) 14-20.
- 10. V.Renukadevi, Remarks on generalized hyperconnectedness, *Acta Math. Hungar.*, 136(3) (2012) 157-164
- 11. V.Renukadevi and P.Vimaladevi, Compatible hereditary classes in GTS, *Acta Math. Hungar.*, 147(2) (2015) 259-271.