2018

M.Sc.

Part-I Examination

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-V

Full Marks: 50

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Mechanics of Continuous Media)

Answer Q. No. 6 and any three questions from the rest. $2+3\times16$

1. (a) An infinite mass of fluid acted on by a force $\mu r^{-\frac{3}{2}}$ per unit mass directed to the origin. If initially the fluid

is at rest and there is a cavity in the form of the sphere r=c in it, show that the cavity will be filled up after an interval of time $\left(\frac{2}{5\mu}\right)^{1/2}c^{5/4}$.

(b) If the equations characterizing the deformation are

$$x_1 = X_1 + \varepsilon X_2$$

$$x_2 = X_2 - \varepsilon X_1 + \varepsilon X_3$$

$$x_3 = X_3 - \varepsilon X_2$$

Determine the Lagrangian and Eulerian finite strain tensors.

- 2. (a) What is the concept of stress vector? Prove that the stress vector at a point on any arbitrary plane surface is a linear function of three stress vectors acting on any three mutually perpendicular planes through that point.

 2+6
 - (b) Prove that the pressure at a point in a perfect fluid has the same magnitude in every direction. 4
 - (c) Show that the difference of the values of a twodimensional stream function at two points represents the flux of a fluid across any curve joining the points.

3. (a) The strain tensor at a point is given by

$$(e_{ij}) = \begin{pmatrix} a & b & 0 \\ b & -a & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Find principal strains with its principal direction of strains.

- (b) Write down the difference between (i) stream line and path line, (ii) source and sink.
- (c) Define image. Find the image of a source with respect to a straight line.
- 4. (a) Derive the Euler's equation of motion of a perfect fluid. Hence obtain the Bernoulli equation in its most general form.

Bernoulli equation in its most general form. 2+6

- (b) Establish the strain vector and strain tensor relationship.
- (c) Define doublet. Find the complex potential for a doublet.
- 5. (a) Derive the equation of energy for a perfect fluid.

C/18/DDE/MSc/Part-I/MTM/5

(b) Define strain quadric. Prove that the extension of a line element through the centre of a strain quadric

in the direction of any central radius vector is equal to the inverse of the square of the radius vector.

4

(c) The state of stress throughout a continuum is given with respect to the Cartesian axes $ox_1x_2x_3$ by

$$(T_{ij}) = \begin{pmatrix} 3x_1x_2 & 5x_2^2 & 0\\ 5x_2^2 & 0 & 2x_3\\ 0 & 2x_3 & 0 \end{pmatrix}$$

Determine the stress vector acting at the point $(2,1,\sqrt{3})$ of the plane that is tangent to the cylindrical

surface
$$x_2^2 + x_3^2 = 4$$
 at P .

6. Find the complex potential of a source. 2

3+2 suprof ference foor or Or, more man discovered

Write down the strain invariants. 2

Lotal Derive the counties of energy for a perfect fillid.