NEW

2018

BCA

2nd Semester Examination

MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

PAPER-1203

Full Marks: 100

Time: 3 Hours

The figures in right-hand the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer Q. No. 1 and any six from the rest, taking at least one from each group.

1. Answer any five questions.

5×2

(a) Show that the set of vectors

 $\{(1, 7, -4), (1, -3, 2), (2, -1, 1)\}$ is linearly dependent.

- (b) Investigate the nature of the roots of the equation $x^4 6x^2 8x 3 = 0$ by Descarte's rule of sign.
- (c) If the sum of two roots of the equation $x^3 + px^2 + qx + r = 0 \text{ is zero, then show that } pq = r.$
- (d) State Rolle's theorem.
- (e) Find the inverse of the matrix $A = \begin{bmatrix} 3 & -1 \\ 1 & 2 \end{bmatrix}$.
- (f) If the events A and B are independent then A^c and B^c are independent.
- (g) Find the geometrical interpritation of $\frac{dy}{dx}$.
- (h) Define normal distribution.

Group-A

(Algebra)

2. (a) If α be a multiple root of order 3 of the equation

$$x^4 + bx^2 + cx + d = 0$$
, then show that $\alpha = \frac{8d}{3c}$.

5

(b) Use Cayley-Hamilton theorem to compute A-1

Where
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
.

3. (a) Solve by Cardan's method
$$x^3 - 6x - 9 = 0$$
. 5

(b) Show that the roots of the equation

$$\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} - \frac{1}{x} = 0$$
Where $a > b > c > 0$ are all real.

4. (a) Show that
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$
 5

(b) Solve the equations by matrix method

$$2x + 3y + z = 11$$
, $x + y + z = 6$, $5x - y + 10z = 34$.

Group-B

(Calculus)

5. (a) If $y = \tan^{-1}x$ then prove that

$$(1+x^2)y_{n+2}+2(n+1)xy_{n+1}+n(n+1)y_n=0.$$

(b) Evaluate
$$\int \frac{dx}{x\sqrt{1-x^3}}$$
.

6. (a) State Euler's theorem on homogenous function and verify

it for the function
$$u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$$
.

(b) Prove that
$$0 < \frac{1}{x} \log \left(\frac{e^x - 1}{x} \right) < 1$$
 using M.V.T. 5

7. (a) Express $\int_a^b e^{-x} dx$ as the limit of a sum and hence evaluate it.

(b) Evaluate
$$\int_0^{\pi/2} \frac{dx}{3 + 5\cos x}$$
.

5.

Group-C

(Probabilities)

- 8. (a) State classical definition of probability. Deduce that
 - (i) $0 \le P(A) \le 1$,
 - (ii) P(S) = 1 where A is any arbitrary event in the event spaces.2+3
 - (b) If A, B are any events, prove thatProb (A + B) = Prob (A) + Prob (B) Prob (AB).
- 9. (a) A box contains 12 blue and 9 red pens. It 5 pens are randomly taken from the box, find the probability that(a) no red pen is taken. (b) at least 3 blue pens are taken.
 - (b) Find the value of the constant c such that

f(x) = cx(1-x) = 0, $0 < x \le 1$ elsewhere.

is a possible probability density function and compute

$$P\left(x > \frac{1}{2}\right).$$

C/18/BCA/2nd Sem/1203

(Turn Over)

- 10. (a) If the lines of regression of y on x and x an y are 3x + 2y = 26 and 6x + y = 31 respectively. Find the correlation coefficient between x and y.
 - (b) Define Binomial distribution and calculate its mean. 5

[Internal Assessment—30 Marks]