2018

BCA 3rd Semester Examination COMPUTER ORIENTED NUMERICAL METHOD

ÖS

STATISTICAL METHOD

PAPER-2103

Full Marks: 70

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer Q. No. 1 and any four from the rest.

1. Answer any five questions:

5×2

- (a) What you mean by absolute error?
- (b) What are the objectives of interpolation?

- (c) Write the condition of convergence of iteration process for solving the root of an equation.
- (d) Round-off the number 4.5126 to four significant figures and find the relative percentage error.
- (e) Prove that $(1 + \Delta)(1 \nabla) = 1$.
- (f) What do you mean by probability density function of a random variable?
- (g) What is the probability of an odd sum when two dice are thrown?
- (h) A card is drawn from a pack. What is the probability that it is queen of spades?
- (a) Write the general rule for rounding off a number to n significant digits.
 - (b) Evaluate f(1.2)

x	0	1	2	3	4
f(x)	1	1.5	2.2	3.1	4.3

(c) Write the geometrical interpretation of Simpson's onethird formula. 5+5+5

- 3. (a) Establish Newton-Raphson Method for solving the real root of an equation.
 - (b) Write the density and distribution function of the standard normal distribution. 9+6
- 4. (a) Solve by the method of iteration:

$$20x + 5y - 2z = 14$$

 $3x + 10y + z = 17$
 $x - 4y + 10z = 23$

- (b) Establish the Sufficient condition of convergence of the Newton-Raphson method.
 9+6
- (a) Establish Simpson's one-third rule of integration from Newton's forward difference formula.
 - (b) Find a real root of the equation $f(x) = x^3 + x^2 + x + 7 = 0$ by bisection method.
- 6. (a) Show that a function f(x) given by

$$f(x) = x$$
 $0 < x < 1$
= $k - x$ $1 < x < 2$
= 0 elsewhere

is a probability density function for a suitable value of the constant k. Calculate the probability that the random variable lies between $\frac{1}{2}$ and $\frac{3}{2}$.

- (b) Evaluate the integral $\int_0^1 \sin x^2 dx$ by Trapezoidal rule taking 10 sub-intervals.
- 7. (a) Evaluate y(0.04) given $\frac{dy}{dx} + y = 0$, y(0) = 1 by Euler method.
 - (b) Given the following table:

x	0	-5	10	15	20
f(x)	1.0	1.6	3.8	8.2	15.4

Compute f(21) by Newton's backward formula.

9+6