2018

BCA 1st Semester Examination DIGITAL ELECTRONICS

PAPER-1104

Full Marks: 70

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the right-hand answers wherever necessary.

Answer Q. No. 1 and any four from the rest.

1. Answer any five questions:

5×2

- (a) Convert the following decimal number to its octal equivalent (0.640625)₁₀.
- (b) Simplify the following expression Y = (A + B) (A + C') (B' + C').
- (c) What is a Prime implicant?

- (d) Define Fan-in and Fan-out.
- (e) What is Propagation delay?
- (f) State advantages and disadvantages of TTL.
- (g) Define race around condition.
- 2. (a) Using k-map method to minimize the following expression:

 $F(w, x, y, z) = m \Sigma(1, 5, 6, 12, 13, 14) + d \Sigma(2, 4).$ 8

- (b) Implement EX-OR gate using NAND gate and NAND gate using NOR gate.
- 3. (a) Explain the concept of parity checking. 5
 - (b) Write down the 4-bit gray codes in the ascending order of decimal values starting from zero.
 5
 - (c) Design a synchronous Mod-12 down counter using J-K flip-flop.
 5
- 4. (a) Represent the decimal number "27" in
 - (i) BCD code
 - (ii) Octal code
 - (iii) Excess-3 code.

3

	(b)	o) Draw the block diagram of a digital multiple		
		explain its function.	4	
	(c)	Give the functional truth table of a 4: 1 multiplexe	r and	
		realize it using gates AND, OR, NOT.	4	
	(d)	Implement the expression using a multiplexer		
		$f(A, B, C, D) = \Sigma m(0, 2, 3, 6, 8, 9, 12, 14).$	4	
5.	(a)	Design a BCD counter using JK flip-flop.	6	
	(b)	Construct an SR (clocked) flip-flop using NAND ga	tes.	
			4	
	(c)	Design a Gray to Binery code converter.	5	
5.	(a)	Describe Delta-encoded Digital to Analog converte	ī.	
		a	5	
	(b)	State the difference between SRAM and DRAM.	3	
	(c)	State the difference between DTL and TTL.	2	
	(d)	Explain Binary weighted Register DAC, R-2R	non-	
		inverting ladder DAC and R-2R inverting DAC in b	rief.	
			5	

7.	Write short note on any three of the following:	3×5
----	---	-----

- (a) Universal gates;
- (b) Decoder;
- (c) Shift Register;
- (d) Ripble counter;
- (e) Demultiplexer.