2018

BCA 1st Semester Examination DISCRETE MATHEMATICS

PAPER-1103

Full Marks: 70

Time: 3 Hours

The figures in right-hand the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer Q. No. 1 and any six questions from the rest.

1. Answer any five questions:

5×2

- (a) If $A = \{2, 5\}$, $B = \{3, 5, 7\}$, find $(A \times B) \cap (B \times A)$.
- (b) Define a group.
- (c) Define a complete graph. Draw K₄.
- (d) How many vertius are there in a 4-regular graph with ten edges?

- (e) If a group (G, o) is abelion, then show that $(ab)^2 = a^2b^2$, for all a, b in G.
- (f) If $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$ then find inverse per mutation
- (g) Construct a truth table for (~p A q) V p.
- (h) Find the recurrence relation of the sequence {1, 1, 2, 3, 5, 8, 13, 21,}.
- 2. (a) Use mathematical induction to prove that $8^n 3^n$ is a multiple of 5 for $n \ge 1$.
 - (b) Solve the recurrence relation $a_n = a_{n-1} + n$, $n \ge 1$ subject to initial condition $a_n = 1$, for n = 0.
- 3. (a) Let S be the set of all positive division of 72. Define a relation ≤ on s by "x ≤ y if and only if x is a divisor by y" for x, y ∈ s. Prove that (S, ≤) is a poset. Draw the Hasse diagram of the poset.
 - (b) Examine whether the mapping $f: Z \rightarrow Z$ defined by f(x) = 2x + 1 for all $x \in z$ is injective or surjective or both.

4

4. (a) Show that $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology.

(b) A relation ρ on the set of all integers Z is defined as $\rho = \{(a, b) \in z \times z : 2a + 3b \text{ is divisible by 5}\}$. Examine whether ρ is an equivalence relation or not.

5. (a) Draw a graph with the help of adjacency matrix

 $\begin{pmatrix} 1 & 1 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 2 & 0 & 2 & 2 \end{pmatrix}.$

(b) Prove that the set (zⁿ: n ∈ z) forms a commutative group with respect to multiplication.

- 6. (a) Prove that the roots of $x^4 = 1$ forms a cyclic group under multiplication. Find its generators.
 - (b) Prove that a field is an integral domain.
- 7. (a) Find the number of possible ways in which the letters of the word 'ESSAY' can be arranged so that the two 's' don't come together.
 - (b) Simplifying the Boolean expression using k-map

 ABC + ABC + ABC + ABC .

5

5

8.	(a)	Show that maximum number of edges in a simple graph	
8		with <i>n</i> vertices is $n(n-1)/2$.	5
	(b)	Define an Eulerian circuit. Give an example.	3
	(c)	Define a planar graph with an example.	2
9.	(a)	Prove that every connected graph has at least	one
		snanning tree	5

- (b) Prove that the sum of the degrees of all the vertices in any graph G is twice the number of edges in G.
- 10. (a) Obtain DNF for $\sim (p \rightarrow (q \land r))$.
 - (b) Draw graphs for the followings:(i) 4-regular graph on 6 vertices,
 - (ii) Eulerian circuit but not Hamiltonian circuit,
 - (iii) Spanning tree of K₂, 3.