2018

STATISTICS

[Honours]

PAPER - IV

Full Marks: 45

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

1. Answer any one question:

 10×1

(a) (i) Distinguish between 'do while' and 'while' loops with examples.

(Turn Over)

- (ii) Write a program in C to calculate the AM and GM of a set of n real numbers. 6
- (b) Carry out the following conversions: 6

(i)
$$(11001 \cdot 11)_2 = ()_{10}$$

$$(ii) (45AC)_{16} = ()_8$$

$$(iii)(59.24)_{10} = ()_2$$

(iv) Describe RAM and ROM.

4

2. Answer any two questions:

 5×2

- (a) Explain the process to fit an exponential trend to a given set of data using MS-Excel.
- (b) What are the different decision control structures used in C?
- (c) Find the sum of the binary numbers:
 - (i) 101-00010 and 11001101
 - (ii) 110011 and 100101

**

GROUP - B

3. Answer any three questions:

 5×3

(a) Show that for a life table the following relation holds approximately:

$$q_x = \frac{2mx}{2 + m_x}$$

where the symbols have their usual meanings.

- (b) Define infant mortality rate (IMR) and discuss its drawback.
- (c) Describe the choice of standard population to be used in the measurement of the standardised death rate.
- (d) Distinguish between stable population and stationary population.
- (e) Derive the equation of the logistic curve under suitable set of assumptions.
- 4. Answer any one question:

 10×1

(a) (i) Define gross reproduction rate (GRR)

UG/II/STAT/H/IV/18(New)

(Turn Over)

and net reproduction rate (NRR). Show that for any community, NRR \leq GRR. What do you mean by saying that NRR for a community = 1.5?

- (ii) Discuss the major sources of data for vital statistics.
- (b) (i) Define e_x^0 function of a complete life table. Prove that under trapezoidal approximation for area under the curve of l_x ,

$$e_0^x = 1 - \frac{1}{2}q_x + \frac{1}{l_x} \sum_{i=1}^{\infty} l_{x+i} - \frac{1}{2l_x} \sum_{i=1}^{\infty} l_{x+i} q_{x+i}$$

(ii) Explain the GP method for population projection.

6

6