2018

PHYSICS

[Honours]

PAPER - IV

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP-A

Answer any two questions

 15×2

1. (a) State D'Alembert's principle. Establish

Lagranges' equation from D' Alembert's

principle for a conservative, holonomic

system. 1+5

(Turn Over)

- (b) Two particles A and B having masses m_1 and m_2 respectively are moving in a two dimensional plane such that the distance between them remains constant.
 - (i) What is the number of degrees of freedom?
 - (ii) Find the co-ordinates of centre of mass and the reduced mass.
 - (iii) Choose an appropriate set of generalised co-ordinates describing the dynamics of two particle system.
 - (iv) Set up Lagrange's equations of motion for these co-ordinates in absence of any applied field.
 - (v) Obtain solutions of these equation.
 - (vi) Give physical interpretation of each solution. $1+2 \div 1 + 2 + 2 + 1$
- 2. (a) What are the essential features of vector atom model.

(b) Explain, with a neat diagram, the doublet

eteriature of Codium lines

et 51	structure of Socialis lines.	,
(c)	Explain LS coupling scheme for addition of	
•	angular momenta. What is jj coupling? Why	
	is it applicable only to heavy elements.	∟ 1
	ノギルコ	~

(d) What are Stokes and antistokes lines in Raman effect?

- (e) Why are the anti-stokes lines less intense that stokes line. The exciting line in an experiment is 5460A and that the stokes line is at 5520A. Find the wavelength of the antistokes line. 2+2
- 3. (a) Draw the circuit diagram of Wien-Bridge oscillator with OPAMP as an active element.Explain its operation. 2+4
 - (b) A Wien Bridge Oscillator is used for a frequency range 30 Hz to 3kHz. The variable capacitance has a range 50pF to 5000 pF.

2

Find out the resistance values required.					
If the resistance in the other arms are in the					
ratio 5: 1, find out the gain of the amplifier.					
Deduce any formula used. 2+:	3				
Design a 4 bit shift register using D flip-flops and explain its operation. $2 + 1$	2				
What are the process through which γ -ray interact with matter?	3				
Explain the nature and origin of β ray spectrum. $2 +$	2				
Explain how the conservation laws are hold in case of β -decay.	3				
Explain qualitatively that emission of k shell electron is more probable during photoelectric emission by γ -ray.	3				
Calculate the minimum energy required for pair-production.	2				

(c)

(a)

(b)

(c)

(d)

(e)

GROUP -B

2		25/20/2	32	¥ 9	
Answer	anv	five	ques	tions	•
A ALLO VY WA	war y	***	4440	*****	•

 8×5

2

- 5. (a) What are the advantages of using negative feedback over positive feedback in case of amplifier?
 - (b) Draw a circuit diagram of a two stage RC coupled transistor amplifier and find the expression for mid frequency voltage gain. 1 + 2
 - (c) The mid band voltage gain of an RC coupled amplifier is 150. At frequencies of 100 Hz and 100 kHz, the gain fall to 75. Determine bandwidth.
- 6. (a) Derive the Euler's equation of motion for an ideal fluid. Hence device Bernoulli's equation. 2+3
 - (b) Find whether given V(Velocity) is a possible motion for an incompressible ideal fluid.

$$\vec{v} = \frac{2xyz}{(x^2 + y^2)} \hat{i} + \frac{(x^2 - y^2)z}{(x^2 + y^2)} \hat{j} + \frac{yz^2}{x^2 + y^2} \hat{k}$$

7. (a) Using Hamilton's Canonical equations, derive the equation of motion of a particle moving in a force field in which the potential is given by

 $V = -\frac{k}{r}$, where k is a positive constant.

Explain, whether energy and angular momentum is conserved or not in this motion. 3+2

- (b) Define cyclic or ignorable co-ordinates. Show that the generalised momenta corresponding to cyclic co-ordinates are conserved.
 1+2
- 8. (a) What is nuclear isomerism? Explain with example.
 - (b) Describe Gamow's theory for decay of α particle from radioactive nuclei. 3
 - (c) What do you mean by fine structure ofα-particle?

- 9. (a) State the semi empirical mass formula for nuclear binding energy.
 - (b) What is Mass parabola? How does mass parabola explain the stability of nuclei of same isobar.

 1+2
 - (c) What is the value of electric quadrupole moment of ²⁰⁸₈₂Pb?
 - (d) Why ${}^{17}_{8}$ O is spontaneous neutron emitter when excited by preceding β -decay?
 - 10. (a) Explain the difference between the spontaneous and the stimulated emissions.
 - (b) What do you mean by Enistein's A, B coefficients? Show that the ratio

$$\frac{A}{B} = \frac{8\pi h v^3}{c^3}$$

where the symbols used having their usual significance. 1+3

3

	(c)	Find the value of Lande g-factor for S-state.	1
11.	(a)	For the electronic transition ${}^{1}D_{2} \rightarrow {}^{1}P_{2}$	
		(i) Draw the energy level diagram and show Zeeman splitting of the energy levels in the presence of a magnetic field.	
		(ii) Show allowed transitions	
		(iii) How many distinct lines are obtained in the Zeeman Spectrum. $(2+2)+2+$	- 1
	(b)	State Moseley's law of X-ray.	1
12.	(a)	What are the differences between combinational logic and sequential logic?	2
	(b)	Design a 4 to 1 multiplexer using basic gates.	2
	(c)	"FET is a voltage controlled device whereas BJT is a current controlled device explain.	2
	(d)	Draw the transfer characteristic curve of an n-channel JFET and explain the nature of curve.	2

GROUP -C

Answer any five questions:

 4×5

- 13. Two masses m_1 and m_2 rest on a smooth surface. A spring of negligible mass and spring constant k and of length to at rests joins the masses. Assuming the motion to remain one dimensional calculate (i) the normal frequency and (ii) normal co-ordinate. 2+2
- 14. Show that

$$Q = \log\left(\frac{1}{q}\sin p\right)$$

and $p = q \cot p$ is a canonical transformation. Find the generating function. 2+2

15. Prove that if the dynamical variables f and g are constant of motion, then their Poisson Bracket is also a constant of motion.

- 16. (a) What is continuous and characteristics X-ray spectrum.
 - (b) Find the critical voltage that must be applied to an X-ray tube to excite the k-series of copper. Given that k-absorption limit is 1.38A.
- 17. What are tuned amplifiers? What are their practical uses? Draw the circuit diagram of a single tuned RF transistor amplifier. Draw the nature of its frequency response curve. 1 + 1 + 1 + 1
- 18. (a) Draw an inverter circuit using MOSFET.
 - (b) Draw a single bit digital comparator using basic gates. 2+2
- 19. A radioactive sample has its half-life equal to 60 days. Calculate its
 - (i) disintegration constant
 - (ii) average life
 - (iii) time for $\frac{1}{4}$ of the original number of atoms to remain unchanged. 1+1+2

20. Suppose a sinusoidal signal $V_S = 10 \sin 2000 \pi t$ is applied to the input of the given OP-AMP circuit with $R = 1 \text{ M}\Omega$ and $C = 1 \mu\text{F}$. Find the output voltage and draw its waveform.

