2018

MATHEMATICS

[Honours]

PAPER - V

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Notations have their usual meanings.

[NEW SYLLABUS]

GROUP - A

(Real Analysis-II)

1. Answer any two questions:

 15×2

(a) (i) Show that the necessary and sufficient conditions for the Riemann integrability of a bounded function f(x) is

$$\lim_{\|P\|\to 0} \{U(P,f) - L(P,f)\} = 0.$$

where ||P|| is the norm of the partition P on [a, b].

(ii) Let a function $f: [a, b] \to R$ be integrable on [a, b]. Then show that

$$\int_a^b |f(x)| dx \ge |\int_a^b f(x)| dx$$

Give an example to show that the converse of the above result may not be true.

(iii) Let f be defined on [-2, 2] by

$$f(x) = 3x^{2} \cos \frac{\pi}{x^{2}} + 2\pi \sin \frac{\pi}{x^{2}}, \quad x \neq 0$$
$$= 0, \quad x = 0$$

Show that f(x) is integrable on [-2, 2]. Evaluate

$$\int_{-2}^{2} f(x)dx. \qquad 5 + (3+2) + (3+2)$$

(b) (i) A function f(x) is defined on [0, 1] by

prove that f(x) is Riemann integrable

on [0, 1] and evaluate
$$\int_{0}^{1} f(x)dx$$
.

(ii) Let a function $f: [a, b] \rightarrow R$ be bounded on [a, b] and P be a partition of [a, b]. If Q be a refinement of P then show that

$$U(P,f) > U(Q,f)$$
 and $L(P,f) < L(Q,f)$.

(iii) State First Mean Value Theorem of Integral calculus. Use this theorem to show that

$$\frac{\pi}{6} \le \int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}} \le \frac{\pi}{6\sqrt{1-\frac{k^2}{4}}} < 1,$$
where $k^2 < 1$. $(3+2)+5+(3+2)$

(c) (i) Let a be the only point of infinite discontinuity of a function f in [a, b] and f be integrable for every ε satisfying $0 < \varepsilon < b - a$. If

 $\int_{a}^{b} f(x)dx$ is absolutely convergent and a function ϕ be bounded and integrable on $[a+\varepsilon,b]$ for every ε satisfying $0 < \varepsilon < b-a$ then prove that the integral

$$\int_a^b f(x)\phi(x)dx$$

is absolutely convergent.

(ii) Show that

$$\left| \int_{p}^{q} \frac{\sin x}{x} dx \right| \leq \frac{2}{p}, \text{ if } q > p > 0.$$

(iii) Give an example of a function which is

Riemann integrable although it has
an infinite numbers of points of
discontinuity. 5+5+5

2. Answer any two questions:

 8×2

(a) (i) If a function $f:[a,b] \to R$ be integrable on [a,b]. Then prove that the function F defined by

$$F(x) = \int_{a}^{x} f(t)dt, \quad x \in [a, b]$$

is differentiable on [a, b] and F'(x) = f(x) for all x in [a, b].

(ii) Prove that the function

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx^2)}{1+n^3}, x \in \mathbb{R}$$

is continuously differentiable on R. 4+4

(b) (i) Evaluate $\iint_R f(x, y) dx dy$ over the rectangle

$$R = [0, 1; 0, 1]$$
 where

$$f(x,y) = \begin{cases} x+y & \text{if } x^2 < y < 2x^2 \\ 0 & \text{elsewhere} \end{cases}$$

(ii) Suppose that f(x) is continuous on [a, b] and $f(x) \ge 0$ for all $x \in [a, b]$ and that

$$\int_{a}^{b} f(x)dx = 0$$

Prove that f(x) = 0 for all $x \in [a, b]$. 4 + 4

(c) (i) Evaluate

$$\iiint\limits_V \frac{dx\,dy\,dz}{(x+y+z+1)^3},$$

where V is the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1.

(ii) If f(x) is continuous in [0, 1], then show that

$$\lim_{n\to\infty} \int_0^1 \frac{n f(x)}{1+n^2 x^2} dx = \frac{\pi}{2} f(0). \qquad 4+4$$

3. Answer any one questions:

 4×1

4

(a) Examine the following equations for the existence of unique implicit function near the points indicated

$$f(x, y) = y^2 - yx^2 - 2x^5, (1, -1).$$

(b) Find the maximum and minimum value of the function

$$f(x, y) = x^3 + y^3 - 3x - 12y + 20.$$
 4
Also find the saddle point of the function.

GROUP -B

(Metric space)

4. Answer any one question:

 8×1

- (a) (i) Show that every open sphere is an open set but not conversely.
 - (ii) Let (X, d) be any metric space, show that the function d, defined by

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}, \forall x, y \in X$$

is a metric on X.

4 + 4

(b)	In a metric space (X, d) if the sequence $\{x_n\}$ and $\{y_n\}$ converges respectively to x and y , then prove that the sequence $\{d(x_n, y_n)\}$ converges to $d(x, y)$.	v
	ii) Prove that any closed subset of a complete metric space is complete. 4 +	. 4
An	ver any one question: 4 >	٤ :
(a)	f A and B are any two subsets of a metric space (X, d) then show that	
	$\operatorname{Int}(A\cap B)=\operatorname{Int}(A)\cap\operatorname{Int}(B).$	4
(b)	Prove that limit of a sequence in a metric space, if exists, is unique.	4

- 6. Answer any one question: 3×1
 - (a) Show that union of arbitrary number of closed set is a closed set.
 - (b) When is a metric said to be complete? Give an example of an incomplete metric space. 1+2

5.

GROUP -C

(Complex Analysis)

7. Answer any one question:

 8×1

- (a) (i) Prove Cauchy-Riemann equation in polar form.
 - (ii) Show that the real and imaginary parts of an analytic function satisfy Laplaces equation.

 4 + 4
- (b) (i) Prove that the function

$$u = \frac{1}{2}\log(x^2 + y^2)$$

is harmonic. Find the corresponding analytic function in terms of z.

(ii) Show that the function $e^x(\cos y + i \sin y)$ is holomorphic and find its derivative.

4 + 4

8. Answer any one question:

 2×1

(a) Give an example of a function f(z) which is continuous everywhere. Justify.

(b) Examine whether $f(z) = |z|^2$ is differentiable at the origin or not.

GROUP -D

(Tensor Calculus)

Answer any one question:

 8×1

- (a) (i) Define Kronecker delta and outer multiplication of tensors.
 - (ii) Prove that the partial derivative of a covariant vector B_{i} is not a tensor. (2+2)+4

- (b) (i) A covariant tensor of rank one has xy, $2y = z^2$, xz in components rectangular co-ordinates. Find its covariant components in spherical coordinates.
 - (ii) Prove that the contraction of a tensor 4 + 4of type (1, 1) is a scalar.

10. Answer any one question:	4×1
(a) If $(ds)^2 = g_{jk} dx^j dx^k$, show that covariant tensor of rank two.	g_{jk} is a
(b) Define Christoffel symbol of 1st kind hence find the value of [ij, k] + [k]	
11. Answer any one question:	3 × 1
(a) Show that Ricci tensor is a sy tensor.	mmetric 3
(b) Define Riemann Curvature tensor hence find the value of R_{hjk}^h .	R_{ijk}^h and $1+2$