Total Pages-12 UG/II/MATH/H/III/18(New)

2018

MATHEMATICS

[Honours]

PAPER - III

Full Marks: 90

Time: 4 hours

The figures in the right-hand margin indicate marks

[NEW SYLLABUS]

GROUP - A

(Vector Analysis)

[Marks : 25]

1. Answer any one question:

8 × 1

(a) (i) If $\frac{d\vec{f}(t)}{dt}$ exists at $t = t_0$, then prove that $-\vec{f}(t)$ is continuous at $t = t_0$. Is the

(Turn Over)

converse true? Illustrate your answer by an example.

(ii) Prove that for any two vector functions \vec{f} and \vec{g} ,

$$\operatorname{div}(\vec{f} \times \vec{g}) = \vec{g} \cdot \operatorname{curl} \vec{f} - \vec{f} \cdot \operatorname{curl} \vec{g}. \qquad 4$$

(b) (i) A particle moves along the curve

$$x = 2t^2$$
, $y = t^2 - 4t$, $z = 3t - 5$

where t is the time. Find the component of its velocity and acceleration at time t = 1 in the direction $\vec{i} - 3\vec{j} + 2\vec{k}$.

(ii) Show that the line integral

$$\int_{0}^{Q} x^{2}ydx + xyzdy + y^{3}dz$$

is not independent of the path of integration, where P and Q are respectively (0, 0, 0) and (1, 1,1). 4 2. Answer any three questions:

 4×3

(a) Verify Green's theorem in a plane for

$$\oint_C \left\{ (x^2 + xy)dx + xdy \right\}$$

where C is the curve enclosing the region bounded by $y = x^2$ and y = x.

- (b) State and prove Gauss divergence theorem. 4
- (c) Let \vec{F} be a given vector field such that the domain D is either an open or a closed region and \vec{F} posscesses continuous partial derivatives. Then prove that the necessary and sufficient condition for the field to be conservative if \vec{F} is a gradient of some scalar field ϕ .
- (d) Show that the acceleration \vec{a} of a particle which travels along a space curve with velocity ν is given by

$$\vec{a} = \frac{dv}{dt}\hat{T} + \frac{v^2}{e}\hat{N},$$

where \hat{T} and \hat{N} are unit tangent and normal vectors to the curve.

(e) Using the divergence theorem convert the surface integral

$$\oint_{S} x^{3}(xdydz + ydzdx + zdxdy)$$

into a volume integral and then evaluate the integral, where S is the surface of the closed cylinder whose curved surface is $x^2 + y^2 = a^2$ and the base are z = 0 and z = b.

3. Answer any one question:

 3×1

4

(a) Show that the integral

$$\iint x dy dz + y dz dx + z dx dy$$

over the surface of a sphere equals three times its volume.

- (b) Find the derivative of the scalar field $u = x^2 y^2$ at the point (5, 4) of the hyperbola $x^2 y^2 = 9$ in the direction of the curve.
- 4. Answer any one question:

 2×1

(a) Find the angle between the gradients

of the functions $u = |\vec{r}|$ and $v = \log |\vec{r}|$ at P(0, 0, 1).

(b) Evaluate

$$\oint_{\Gamma} \left(e^x dx + 2y dy - dz \right)$$

by using Stokes's theorem, where Γ is the curve $x^2 + y^2 = 4$, z = 2.

GROUP -B

(Analytical Geometry of three Dimensions)

[Marks : 30]

5. Answer any one question:

15 x 1

(a) (i) Find the equation of a cone whose vertex is the point P(x, y, z) and whose generating lines pass through the conic

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, z = 0.$$

If the section of this cone by the plane

z = 0 is a rectangular hyperbola, show that the locus of P is

$$\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1.$$

(ii) Show that the equation

$$2y^2 - 2yz + 2zx - 2xy - x - 2y + 3z - 2 = 0$$

represents a hyperbolic cylinder and find
the equations of its axis.

(b) (i) A sphere of constant radius r passes through the origin O and cuts the axes in A, B, C. Prove that the locus of the foot of the perpendicular from O to the plane ABC is given by

$$(x^2 + y^2 + z^2)^2 (x^{-2} + y^{-2} + z^{-2}) = 4r^2$$
. 7

(ii) Find the equation of the ruled surface generated by a variable straight line which is always parallel to the plane x = 0 and intersects the line x + z = 1, y = 0 and the parabola $y^2 = 4x$, z = 0.

8

6. Answer any one question:

 8×1

(a) A variable sphere passes through the points $(0, 0, \pm c)$ and cuts the straight lines $y = x \tan \alpha$, z = c and $y = -x \tan \alpha$, z = -c at the points P and P'. If PP' = 2a, (a is a constant), show that the centre of the sphere lies on the circle

$$x^2 + y^2 = (a^2 - c^2) \csc^2 2\alpha, z = 0.$$

(b) Show that the perpendiculars from the origin to the generators

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 lie upon

$$\frac{a^2(b^2+c^2)^2}{x^2} + \frac{b^2(c^2+a^2)^2}{y^2} = \frac{c^2(a^2-b^2)^2}{z^2}.$$

7. Answer any one question:

 4×1

(a) Prove that the enveloping cylinder of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
,

whose generators are parallel to the lines

$$\frac{x}{0} = \frac{y}{\pm \sqrt{a^2 - b^2}} = \frac{z}{c}$$

meet the plane z = 0 in circles.

(b) Find the equations to the generating lines of the hyperboloid

$$yz + 2zx + 3xy + 6 = 0$$

which pass through the point (-1, 0, 3).

8. Answer any one question:

 3×1

(a) If α, β, γ be the direction angles of a straight line, then show that

$$\sin^2\alpha + \sin^2\beta + \sin^2\gamma = 2$$

(b) Find the equations of the straight line that intersects the straight lines

$$x+y+z-4=0=2x-y-z-3,$$

 $x-y+z-3=0=x+4y-z+1$

and passes through the point (1, 0, 1).

GROUP -C

(Linear Programming and Game Theory)

[Marks: 35]

9. Answer any one question:

 15×1

(a) (i) Find the dual of the following L.P.P and hence solve it. What is the advantages to use duality to solve an L.P.P.

Maximize
$$Z = 3x_1 - 2x_2$$

subject to $x_1 \le 4$
 $x_2 \le 6$
 $x_1 + x_2 \le 5$
 $-x_2 \le -1$
and $x_1, x_2 \ge 0$

7

(ii) Prove that if for a BFS X_B of a LPP

Maximize Z = cxSubject to Ax = b, $x \ge 0$

we have $z_i - c_j \ge 0$ for every column a_j of A, then X_B is an optimum solution.

(b) (i) Solve the following Travelling salesman problem. A salesman has to visit five

UG/II/MATH/H/III/18(New)

(Turn Over)

cities. He wishes to start from a particular city, visit each city once and return to the starting city. The cost of going from a city to another in Rs. is given below.

From	To city					
		A	В	C	D	E
City	Á	_	12	15	17	11
\	B	16	-	15	18	12
	c	18	17		17	17
25	D	21	14	18	_	16
	E	11	13	12	18	-

(ii) If an LPP optimize z = cx subject to $Ax = b, x \ge 0$, where A is the $m \times n$ coefficient matrix (m < n) and R(A) = m has an optimal solution, then there exists at least one BFS which will be optimal. Prove it.

10. Answer any two questions:

 8×2

8

(a) Using Hungarian method, solve the following assignment problem for minimum total cost.

(Continued)

-		4	
	-	٠.	
J	1.1	ш	

		P	Q	R	S	T
Typist	A	85 100 75 90 86	78	65	90	60
	B	100	80	50	75	82
	\mathcal{C}	75	76	40	62	66
	D	90	72	38	87	92
	E	86	80	85	72	82

Find the optimum assignments of jobs to typists and the minimum total cost. Is the solution obtained by you unique?

- (b) (i) State the rules of dominance for two persons zero-sum matrix games.
 - (ii) Use graphical method to solve the following game:

		$\boldsymbol{\mathit{B}}$		
		I	11	
	I	2	-2	
9 61	П	-1	4	
1	Ш	5	-3	
	ĮΨ	-2	1	
	V	6	- 0	

8

3

5

(c) Using dual simplex method, solve the following LPP:

Minimize
$$Z = 10x_1 + 6x_2 + 2x_3$$
.
subject to $-x_1 + x_2 + x_3 \ge 1$
 $3x_1 + x_2 - x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$.

8

11. Answer any one question:

 4×1

- (a) (i) Define convex polyhedron with example. 2
 - (ii) Distinguish between a regular simplex method and a dual simplex method.

2

- (b) (i) Every transportation problem has an 2 optimal solution. Justify it.
 - (ii) What do you mean by a standard form of an LPP?