2018

MATHEMATICS

[Honours]

PAPER - II

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Notations have their usual meanings

GROUP - A

(Real Analysis)

[Marks: 35]

Answer any one question:

 15×1

(a) (i) State Peano's axioms for natural numbers. Using these, prove that the set of natural numbers has no upper bound.

(Turn Over)

(ii)	Prove that every convergent sequence of real numbers is necessarily bounded.				
	answer.				4+2

- (iii) State order properties of real numbers. Prove that $\sqrt{17}$ is an irrational numbers. 1+3
- (b) (i) Define a Cauchy sequence of real numbers. Prove that in R, every Cauchy sequence is convergent. Is it true in Q? Justify your answer. 2+4+2
 - (ii) Prove that the set of rational numbers Q is enumerable.
 - (iii) Let A and B be subsets of R and $A \subset B$, then prove that $A' \subset B'$, where A' is the derived set of A.
- 2. Answer any two questions:

 8×2

4

3

(a) (i) Define subsequence. Define limsup and liminf of a sequence. Prove

$$\lim \left(1+\frac{1}{2n}\right)^n=\sqrt{e}.$$

(ii) Show that infinite series

$$\left(\frac{1}{2}\right)^2 + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 x + \left(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\right)^2 x^2 + \cdots$$
converges if $0 < x < 1$ and diverges

if $x \ge 1$.

- (b) State Maclaurin's infinite series obtain the expansion of $(1+x)^m$ where m is any real number other than positive integer and |x| < 1. 2+6
- (c) (i) Let $f: [a, b] \rightarrow [a, b]$ be continuous on [a, b]. Then show that for some $\xi \in [a, b], f(\xi) = \xi$. Is ξ unique? 2+2
 - (ii) From Cauchy's Mean Value Theorem. deduce Lagrange's Mean Value Theorem. 4

3. Answer any one question:

 4×1

(a) Find

$$\lim_{x \to \infty} \left\{ x - \sqrt[n]{(x - a_1)(x - a_2)....(x - a_n)} \right.$$

(b) Give example to show that the condition stated in Rolle's Theorem are sufficient only but not necessary for the validity of the result.

4

GROUP - B

(Several Variables and Applications)

[Marks : 20]

4. Answer any two questions:

 8×2

(a) Let

$$f(x,y) = \begin{cases} xy, & \text{when } y > 0 \\ -xy^2, & \text{when } y \le 0 \end{cases}$$

which of the four Second-order derivatives exist at origin?

8

(b) (i) Show that the family of circles

$$(x-a)^2 + y^2 = a^2$$

has no envelope.

(ii) If
$$u^3 + v^3 = x + y$$
, $u^2 + v^2 = x^3 + y^3$
show that

$$\frac{\partial(u,v)}{\partial(x,y)} = \frac{1}{2} \frac{y^2 - x^2}{uv(u-v)}.$$

(c) (i) If
$$v = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, then verify

that $\sin v = \frac{x+y}{\sqrt{x+\sqrt{y}}}$ is a homogeneous

function of x, y of degree $\frac{1}{2}$. Hence prove that

$$x\frac{dv}{dx} + y\frac{dv}{dv} - \frac{1}{2} \cdot \frac{1}{2} \tan v = 0.$$

(ii) Find the envelope of the lines whose equation are

$$x\sec^2\theta + y\csc^2\theta = c, \theta$$

being parameter and c is a constant.

5. Answer any one question:

 4×1

(a) Find the pedal equation of the curve $r = a + b\cos\theta$. with respect to the pole.

4

(b) Show that the origin is a node, cusp or on isolated point on the curve $y^2 = ax^2 + bx^3$ according as a > 0.

4

GROUP -C

(Analytical Geometry for two Dimensions)

[Marks: 20]

6. Answer any two questions:

 8×2

(a) If one of the straight lines $ax^2 + 2hxy + by^2 = 0$ coincides with one of the straight lines $a'x^2 + 2h'xy + b'y^2 = 0$ and the remaining two straight lines are at right angles, then prove that

$$h\left(\frac{1}{b} - \frac{1}{a}\right) = h'\left(\frac{1}{b'} - \frac{1}{a'}\right).$$

(b) Reduce the equation

 $4x^2 - 4xy + y^2 - 8x - 6y + 5 = 0$ to its canonical form and show that it represents a parabola. Find the latus rectum and the equation of the axis of the parabola. 8

(c) Prove that the two conics

$$\frac{l_1}{r} = 1 - e_1 \cos \theta \text{ and } \frac{l_2}{r} = 1 - e_2 \cos(\theta - \alpha)$$

will touch one another if

$$l_1^2 \left(1 - e_2^2 \right) + l_2^2 \left(1 - e_1^2 \right) = 2 l_1 l_2 \left(1 - e_1 e_2 \cos \alpha \right).$$

7. Answer any one question :

 4×1

- (a) If by a rotation of co-ordinate axes the expression $ax^2 + 2hxy + by^2$ changes to $a'x'^2 + 2h'x'y' + b'y'^2$, then prove that a + b = a' + b' and $ab h^2 = a'b' h'^2$.
- (b) If the sum of the ordinates of two points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ be b, show that the locus of the pole of the chord which joins them is $b^2x^2 + a^2y^2 = 2a^2by$.

GROUP -D

(Differential Equations-I)

[Marks: 15]

8. Answer any one question:

 15×1

(a) (i) Show that the differential equation of a general parabola is

$$\frac{d^2}{dx^2} \left[\left(\frac{d^2 y}{dx^2} \right)^{\frac{2}{3}} \right] = 0.$$

- (ii) Show that in an exact equation M(x, y) dx + N(x, y) dy = 0, if M and N be homogeneous functions of x and y and of degree $n \neq -1$, having continuous first order partial derivatives, then the primitive is Mx + Ny =constant.
- (iii) Solve by the method of variation of parameter

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x} \sec x.$$
 5

(b) (i) Solve

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - 1 = 0$$

given that $x + \frac{1}{x}$ is its one integral.

(ii) Find the eigenvalues and eigenfunctions

of
$$\frac{d^2y}{dx^2} + \lambda y = 0$$
, $(\lambda > 0)$ under boundary conditions $y(0) + y'(0) = 0$ and $y(1) + y'(1) = 0$.

(iii) Find the orthogonal trajectories of the family of co-axial circles

$$x^2 + y^2 + 2gx + c = 0$$

where g is the parameter and c is constant.

5