2018

MATHEMATICS

[Honours]

PAPER -I

Full Marks: 90

Time: 4 hours

The figures in the right-hand margin indicate marks

GROUP - A

(Classical Algebra)

[Marks : 30]

1. Answer any one question:

 15×1

- (a) (i) Show that the equation $x^4 14x^2 + 24x + k = 0$ has
 - (1) four real and unequal roots if -11 < k < -8.

(II) two distinct real roots if -8 < k < 117(III) no real root if k > 117.

Discuss the cases when k = 117, k = -8 and k = -11.

(ii) If a, b, c be positive real numbers such that the sum of any two is greater than the third, prove that

$$abc \ge (a+b-c)(b+c-a)(c+a-b)$$
 4

(iii) State and prove De Moivre's theorem. 6

(b) (i) If $(1+x)^n = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$, then show that

$$a_0 - a_2 + a_4 - \dots = 2^{n/2} \cos \frac{n\pi}{4}$$

and $a_1 - a_3 + a_5 - \dots = 2^{n/2} \sin \frac{n\pi}{4}$.

(ii) If $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ are any real numbers, then prove that

$$(a_1^2 + a_2^2 + \dots + a_n^2)(b_1^2 + b_2^2 + \dots + b_n^2) \ge (a_1b_1 + a_2b_2 + \dots + a_nb_n)^2$$
 6

- (iii) Find the relation among p, q, r, s so that the product of two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ is unity.
- 2. Answer any one question:

 8×1

(a) (i) If α , β , γ be the roots of the equation $x^3 + qx + r = 0$ ($r \neq 0$), find the equation whose roots are

$$\frac{\alpha}{\beta}, \frac{\beta}{\alpha}, \frac{\beta}{\gamma}, \frac{\gamma}{\beta}, \frac{\gamma}{\alpha}, \frac{\alpha}{\gamma}.$$

- (ii) Find the roots of the equation $z^n = (z+1)^n$ and show that the points which represent them in the Argand diagram are collinear. 4
- (b) (i) Let a, b, c be three positive numbers in harmonic progression. Prove that

$$\frac{a+b}{2a-b} + \frac{c+b}{2c-b} > 4.$$

(ii) If 1, α , β , γ , are the roots of the equation $x^n - 1 = 0$, then show that

$$(1-\alpha)(1-\beta)(1-\gamma)\cdots=n.$$

(iii) Find the values of
$$(1+i)^{1/5}$$
.

3. Answer any one question:

 4×1

(a) Solve the equation by Cardan's method

$$x^3 + 3x^2 + 6x + 4 = 0.$$

- (b) Find the general values and the principal value of $i^{(x+iy)}$ where x, y are real. Show that the principal value is purely real or purely imaginary according as x is an even or an odd integer.
- 4. Answer any one question:

 3×1

(a) If α be a multiple root of order 3 of the equation $x^4 + bx^2 + cx + d = 0$, then show that

$$\alpha = -\frac{8d}{3c}.$$

(b) If $a \cdot \exp(i\theta) + b \cdot \exp(3i\theta) = c$ where a, b, c are all real, prove that either $a + b = \neq c$, or $b(b - a) = c^2$.

GROUP - B

(Abstract Algebra)

[Marks: 35]

5. Answer any three questions:

 8×3

- (a) (i) Correct or justify the statement:

 Every relation is a mapping but every mapping is not a relation.
 - (ii) Use mathematical induction to establish

$$\sum_{i=1}^{n} (i+1)2^{i} = n \cdot 2^{n+1}.$$

(b) (i) Let

$$G = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix} \middle| \begin{array}{l} a, b \in R \\ a + b \neq 0 \end{array} \right\},$$

then show that

- (1) G is a semigroup under matrix multiplication.
- (2) G has left identity.
- (3) Each element of G has a right inverse. 4

	(ii)	Prove that every field is an integral domain, but the converse is not true.	4
(c)	(i)	Define cosets of a subgroup in a group. Let G be a group and H be a subgroup of G . Prove that any two left cosets of H in G are either identical or disjoint. $1 + 1$	
	(ii)	Define normal subgroup of a group. If $Z(G)$ be the centre of the group G . Prove that $Z(G)$ is a normal subgroup of G . 1 +	
(d)	(i)	Let G be a group and the mapping $f: G \to G$ be defined by $f(a) = a^{-1}, a \in G$. Show that f is an automorphism if and only if G is abelian.	4
	(ii)	Define subfield of a field. Prove that intersection of two subfield is a subfield.	4
(e)	<i>(i)</i>	Prove that order of each subgroup of a finite group G is a divisor of the order of the group G .	4
	Gii	State well ordering principle for the set	

of natural numbers. Prove that every	ÿ
integer $n > 1$ has a prime factor.	4

6. Answer any two questions:

 4×2

- (a) State and prove Lagrange's theorem on finite groups.
- (b) If $a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ are two elements of S_3 , then find the solution of the equation ax = b in S_3 .
- (c) If in a ring $(B, +, \cdot)$, $a^2 = a$ for all $a \in B$, show that 2a = a + a = 0 for all a where B is a commutative ring. Show that in a commutative ring R, 2a = 0 for all $a \in R$ need not hold. 2 + 2
- 7. Answer any one question:

 3×1

- (a) Define cyclic group. Prove that cyclic group is abelian.
- (b) Let G be a group and $a \in G$. If O(a) = 24, find $O(a^4)$, $O(a^7)$ and $O(a^{10})$.

GROUP - C

(Linear Algebra)

[Marks: 25]

8. Answer any one question:

 15×1

(a) (i) If

$$U = L\{(1, 2, 1), (2, 1, 3)\},\$$

 $W = L\{(1, 0, 0), (0, 0, 1)\}$

show that U and W are subspace of \mathbb{R}^3 . Determine $\dim U$, $\dim W$, $\dim(U \cap W)$. Deduce that $\dim(U+W)=3$.

- (ii) Show that a linearly independent set of vectors of a finite dimensional vector space V over a field F is either a basis of V or can be extended to a basis of V.
- (iii) If a, b, c are unequal real numbers then find the rank of the matrix

$$\begin{pmatrix} 0 & a & b \\ -a & 0 & -c \\ -b & c & 0 \end{pmatrix}.$$

(b) (i) A real symmetric matrix A is positive definite. Prove that $A = PP^{t}$ for some non-singular matrix P. Show that

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

is positive definite and find the matrix P such that $A = PP^{t}$.

(ii) Find the eigen values and the corresponding eigen vectors of the following matrix

$$\begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}.$$

(iii) Define eigen value of a matrix. If λ be an eigen value of an orthogonal matrix, then show that $\frac{1}{\lambda}$ is also an eigen value of this matrix.

5

5

9. Answer any one question:

 8×1

(a) (i) If α and β be vectors in an inner product space, then show that

$$\|\alpha + \beta\|^2 + \|\alpha - \beta\|^2 = 2\|\alpha\|^2 + 2\|\beta\|^2$$
 4

(ii) Determine the values of k so that the following system of equations has
(1) no solution, (2) more than one solution, (3) a unique solution.

$$x+y-z=1$$

$$2x + 3y + kz = 3$$

$$x + ky + 3z = 2$$
4

(b) (i) Reduce the following quadratic form to normal form and examine whether the quadratic form is positive definite or not.

$$6x^2 + y^2 + 18z^2 - 4yz - 12zx \qquad 4$$

(ii) Use Gram-Schmidt process to obtain an orthogonal basis from the basis set {(1, 0, 1), (1, 1, 1), (1, 3, 4)} of the

(11)

Euclidean space R³ with standard inner product.

10. Answer any one question:

 2×1

4

(a) Use Cayley-Hamilton theorem to compute

$$A^{-1}$$
, where $A = \begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}$.

(b) Find a basis and the dimension of the subspace W of \mathbb{R}^3 , where

$$W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$$