NEW

2018

Part-II 3-Tier

MATHEMATICS

(General)

PAPER-II

Full Marks: 90

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group-A

(Differential Calculus)

[Marks: 45]

Answer any one question :

- (a) (i) Define Cauchy sequence. Prove that every convergent sequence is a Cauchy sequence. 2+3
 - (ii) Prove that $\sqrt{7}$ is not a rational number.

(iii) State Cauchy's root test for the convergence of positive term series. Use it to examine the convergence or divergence of the series

$$2x + \frac{3^2x^2}{2^3} + \frac{4^3x^3}{3^4} + \frac{5^4x^4}{4^5} + \cdots$$
 2+4

(b) (i) Use Raabe's Test to examine the convergence of the

series
$$\sum \left(\frac{1.3.5. (2n-1)}{2.4.6. (2n+2)}\right)$$
.

(ii) A mapping f: R → R is defined as

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ -1 & \text{if } x \text{ is irrational} \end{cases}.$$

Find the range of f. What is $f(\sqrt{7})$? 1+1

- (iii) Show that f(x) = |x 1| is continuous at x = 1 but not derivable at that point. 1+2
- (iv) Show that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$, p > 0 converges for p > 1 and diverges for $p \le 1$.
- 2. Answer any one question :

- (a) (i) State and prove Rolle's Mean Value theorem. 4
 - (ii) If f(x) is an even function and f'(0) exists, show that f'(0) = 0.

(b) (i) Determine the value of a, b such that

$$\lim_{x\to 0} \frac{ae^x - b\cos x + e^{-x}}{x\sin x} = 2.$$

- (ii) Establish the inequality $x < \sin^{-1} x < \frac{x}{\sqrt{1-x^2}}$, 0 < x < 1.
- 3. Answer any four questions:

4×4

- (a) Find the radius of curvature of the curve $r^2\cos 2\theta = a^2$ at any point on it.
- (b) Find the rectilinear asymptotes of $y^3 xy^2 x^2y + x^3 + x^2 y^2 1 = 0.$
- (c) Prove that the points of the curve $y^2 = 4a\left\{x + a\sin\frac{x}{n}\right\}$ at which the tangents is parallel to the x-axis, lie on a parabola.
- (d) Suppose f(x, y) is defined as follows:

$$f(x) = \begin{cases} xy, & |x| \ge |y| \\ -xy, & |x| < |y| \end{cases}$$

Show that,

$$f_{xy}(0, 0) \neq f_{yx}(0, 0).$$

(e) If
$$y = 2 \cos x(\sin x - \cos x)$$
, show that $(y_{10})_0 = 2^{10}$.

(f) Let
$$f(x) = x^2 \sin\left(\frac{1}{x}\right)$$
, $x \neq 0$
= 0, $x = 0$

Show that f(x) is continuous and differentiable at x = 0.

4. Answer any three questions:

 3×2

- (a) State geometrical interpretation of $\frac{dy}{dx}$.
- (b) Show that the existence of a maximum or a minimum value of a function f(x) at a certain point need not imply

$$\frac{df}{dx} = 0$$
 at that point.

- (c) For what value of 'a' the function $f(x) = \begin{cases} x^2 1, & x < 3 \\ 2ax, & x \ge 3 \end{cases}$ is continuous everywhere?
- (d) Find the range of real valued function of a real variable

where
$$f(x) = \frac{|x|}{x} + 2$$
.

(e) Show that $\lim_{(x, y)\to(0, 0)} \frac{2xy}{x^2+y^2}$ does not exist. 2

Group-B

(Integral Calculus)

[Marks : 30]

5. Answer any one question :

1×16

(a) Evaluate any two:

 2×4

(i) $\int \frac{x^2}{x^4 + x^2 - 2} dx$

(ii) $\int \frac{\mathrm{dx}}{5 - 13\sin x}$

4

(iii) $\lim_{n\to\infty} \left[\frac{1^{10} + 2^{10} + \cdots + n^{10}}{n^{11}} \right].$

4

(b) Obtain the reduction formula of $\int_{0}^{\pi/4} \sec^{n} x \, dx$. Hence

4+4

evaluate $\int_{a}^{a} \left(a^2 + x^2\right)^{5/2} dx$.

(a) Answer any two questions:

(i) Evaluate

 2×4

 $\lim_{n\to\infty} \left\{ \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2^2}{n^2}\right)^2 \left(1 + \frac{3^2}{n^2}\right)^3 \right. \dots \\ \left. \left(1 + \frac{n^2}{n^2}\right)^n \right\}^{\frac{\nu}{n^2}}.$

(ii) Prove that

$$\int_0^{3a} f(x) dx = 3 \int_0^a f(x) dx \text{ if } f(a+x) = f(x).$$

(iii) Evaluate
$$\int_0^{\pi} \frac{x \tan x}{\sec x + \cos x} dx$$
.

(b) (i) Prove that
$$B(m, n) = 2 \int_0^{\frac{\pi}{2}} \sin_{\theta}^{2m-1} \cos_{\theta}^{2n-1} d\theta$$
. 4

(ii) Prove that
$$\int_0^\infty e^{-x^4} dx \times \int_0^\infty e^{-x^4} \cdot x^2 dx = \frac{\pi}{8\sqrt{2}}$$
.

6. Answer any one question :

- (a) (i) Determine the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ between the curve and its latus rectum.
 - (ii) An arc of the sine curve $y = \sin x$ from x = 0 to $x = \pi$ is revolved about the x-axis. Find the surface of the solid thus generated.
- (b) (i) Find the perimeter of the curve represented by

$$x = \frac{1-t^2}{1+t^2}, y = \frac{2t}{1+t^2}$$

(ii) Find the volume of revolution generated by the region enclosed by $y = \sqrt{x}$ and the lines y = 1, x = 4 about x-axis.

7. Answer any one question :

1×5

- (i) Compute $\iiint xyz \, dx \, dy \, dz$ over a domain bounded by x = 0, y = 0, z = 0 and x + y + z = 1.
- (ii) Evaluate $\iint [2a^2 2a(x+y) (x^2 + y^2)] dx dy$, the region of integration being the circle $x^2 + y^2 + 2a(x+y) = 2a^2$.

Group—C (Differential Equation)

[Marks: 15]

8. Answer any two questions:

- (a) (i) Obtain the singular solution of $yp = xp^2 p 2$ where $p = \frac{dy}{dx}$.
 - (ii) Find the particular integral of

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} - 2 \frac{\mathrm{d} y}{\mathrm{d} x} = e^x \sin x.$$

(b) (i) Solve the following simultaneous equations:

$$\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\mathrm{d}y}{\mathrm{d}t} + 2y = 0,$$

$$\frac{\mathrm{dx}}{\mathrm{dt}} - 3x - 2y = 0$$

(ii) Find the integrating factor of

$$1 + y^2 + \left(x - e^{-\tan^{-1}y}\right) \frac{dy}{dx} = 0$$
.

(c) (i) Evaluate:
$$\frac{1}{D+2}e^{-2x}\sin 3x$$
.

(ii) Solve:
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$$
.

9. Answer any one question :

 1×3

- (i) Find the differential equation of the function
 y = Ae^x + Be^{-x} + x² where A and B are arbitrary constants.
- (ii) Find the orthogonal trajectories of the family of curves

$$x^{2/3} + y^{2/3} = a^{2/3}$$
; a being a parameter. 3